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 What is a Signal 
      We are all immersed in a sea of signals.  All of us from the smallest living 
unit, a cell, to the most complex living organism(humans) are all time time 
receiving signals and are processing them.  Survival  of any living organism 
depends upon processing the signals appropriately.  What is signal? To define this 
precisely is a difficult task. Anything which carries information is a sig- nal. In this 
course we will learn some of the mathematical  representations of the signals, which 
has been found very useful in making information process- ing systems. Examples 
of signals are human voice, chirping of birds, smoke signals, gestures (sign 
language), fragrances of the flowers. Many of our body functions  are regulated by 
chemical signals, blind  people use sense of touch. Bees communicate by their 
dancing pattern.Some examples of modern high speed signals are the voltage 
charger in a telephone wire, the electromagnetic field emanating from a transmitting 
antenna,variation of light intensity in an optical fiber. Thus we see that there is an 
almost endless variety of signals and a large number of ways in which signals are 
carried from on place to another place.In this course we will adopt the following 
definition for the signal: A signal is a real (or complex) valued function of one or 
more real variable(s).When the function depends on a single variable, the signal 
is said to be one- dimensional. A speech signal, daily maximum temperature, 
annual rainfall at a place, are all examples of a one dimensional signal.When  the 
function depends on two or more variables, the signal is said to be 
multidimensional. An image is representing the two dimensional signal,vertical 
and horizon- tal coordinates representing the two dimensions. Our physical world 
is four dimensional(three spatial and one temporal). 
 
 

 What is signal processing 
 
     By processing we mean operating in some fashion on a signal to extract some 
useful information.  For example when we hear same thing we use our ears and 
auditory path ways in the brain to extract the information. The signal is 
processed by a system.  In the example mentioned above the system is 
biological in nature.  We can use an electronic system to try to mimic this 
behavior. The signal processor may be an electronic system, a mechanical 
system or even it might be a computer program.The word digital in digital 
signal processing means that the processing is done either by a digital 
hardware or by a digital computer. 
 

 Analog versus digital signal processing 
 
     The signal processing operations involved in many applications like commu- 
nication  systems, control systems, instrumentation,  biomedical signal pro- 
cessing etc can be implemented in two different ways 

(1) Analog or continuous time method and 
(2) Digital  or discrete time method. 
The analog approach to signal processing was dominant for many years. The 
analog signal processing uses analog circuit  elements such as resistors, ca-
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pacitors, transistors, diodes etc.  With the advent of digital computer and 
later microprocessor, the digital signal processing has become dominant now a 
days. The analog signal processing is based on natural ability of the analog 
system to solve differential equations the describe a physical system. The 
solution 
        are obtained in real time. In contrast digital signal processing relies on 
numerical calculations.  The method may or may not give results in real time. 
The digital approach has two main advantages over analog approach  
     (1) Flexibility:  Same hardware can be used to do various kind of signal 
processing operation,while  in the core of analog signal processing one has 
todesign a system for each kind of operation. 
    (2) Repeatability:   The same signal processing operation  can be repeated 
again and again giving same results, while in analog systems there may be 
parameter variation due to change in temperature or supply voltage. 
     The choice between analog or digital  signal processing depends on 
application. One has to compare design time,size and cost of the 
implementation. 
 
 

 Classification of signals 
 
     As mentioned earlier, we will use the term signal to mean a real or complex 
valued function of real variable(s).  Let us denote the signal by x(t).  The 
variable t is called independent variable and the value x of t as dependent 
variable. We say a signal is continuous time signal if the independent variable t 
takes values in an interval. 

For example t ԑ  (−∞, ∞), or t ԑ  [0, ∞] or t ԑ   

[T0 , T1 ] 
      The independent variable t is referred to as time,even though it may not be 
actually time. For example in variation if pressure with height t refers above 
mean sea level. 
When t takes a vales in a countable set the signal is called a discrete time 
signal. For example 
T ԑ  {0, T , 2T, 3T, 4T , ...} or  t  ԑ  {... − 1, 0, 1, ...} or t ԑ  {1/2, 3/2, 5/2, 7/2, ...} 
etc. 
 
      For convenience of presentation  we use the notation  x[n] to denote discrete 
time signal. 
     Let us pause here and clarify the notation a bit. When we write x(t) it has 
two meanings. One is value of x at time t and the other is the pairs(x(t), t) 
allowable value of t. By signal we mean the second interpretation.  To keep this 
distinction we will use the following notation: {x(t)} to denote the con- tinuous 
time signal. Here {x(t)} is short notation for {x(t), t I } where I is the set in 
which t takes the value. Similarly  for discrete time signal we will use the 
notation {x[n]}, where {x[n]} is short for {x[n], n I }. Note that in {x(t)} and 
{x[n]} are dummy variables ie.  {x[n]} and {x[t]} refer to the same signal.  
Some books use the notation x[·] to denote {x[n]} and x[n] to denote value of 
x  at time n · x[n] refers to the whole waveform,while x[n] refers to a particular 
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value. Most of the books do not make this distinction clean and use x[n] to 
denote signal and x[n0 ] to denote a particular value. As with independent 
variable t, the dependent variable x can take values in a continues set or in a 
countable set. When both the dependent and inde- pendent variable take value 
in intervals, the signal is called an analog signal. When both the dependent and 
independent variables take values in countable sets(two sets can be quite 
different) the signal is called Digital signal.When we use digital  computers to 
do processing we are doing digital  signal pro- cessing. But most of the theory 
is for discrete time signal processing where default variable is continuous. This 
is because of the mathematical simplic- ity of discrete time signal processing. 
Also digital signal processing tries to implement this as closely as possible. 
Thus what we study is mostly discrete time signal processing and what is really 
implemented is digital signal pro- cessing. 

 

Exercise: 
1.GIve examples of continues time signals. 
2.Give examples of discrete time signals. 
3.Give examples of signal where the independent variable is not time(one-
dimensional). 
4.Given examples of signal where we have one independent variable but dependent 
variable  has more than one dimension.(This  is sometimes called vector valued 
signal or multichannel signal). 
5.Give examples of signals where dependent variable is discrete but independent 
variable are continues. 

 Elementary signals 
 

There are several elementary signals that feature prominently in the study 
of digital signals and digital signal processing. 

 

(a)Unit  sample sequence δ[n]: Unit sample sequence is defined by 

  
1,   n = 0  

δ[n] = { 0,   n = 0  
 

Graphically this is as shown below. 
δ[n] 

 
1 

 
 

 
 

-3 -2 -1 0 
n 

1 2 3 4 
 

Unit  sample sequence is also known as impulse sequence. This plays role akin 
to the impulse function δ(t) of continues time. The continues time impulse 
δ(t) is purely a mathematical construct while in discrete time we can actually 
generate the impulse sequence. 

 

(b)Unit  step sequence u[n]: Unit step sequence is defined by 
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1,  n ≥ 0 
u[n] = { 0,  n < 0 

Graphically this is as shown below 
u[n] 

1 

................. 

.......... -3 -2 -1 0 1 2 3 4 ................ n
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(c) Exponential sequence: The complex exponential  signal or sequence x[n]
is defined by

x[n] = C αn

where C and α  are, in general, complex numbers. Note that by writing 
α = eβ , we can write the exponential  sequence as x[n] = c  eβ n. 

Real exponential signals: If C and α are real, we can have one of the several 
type of behavior illustrated below 

. . . . . . . . . . 

n 
{x[n] = αn ,  α > 1} 

. . . . . . . . . . 

n {x[n] = αn , 0 < α < 1} 

. . . . . . . . . . 

n 

{x[n] = αn , −1 < α < 0} 

. . . . . . . . . . 

n 
{x[n] = αn ,  α < −1} 

if |α| > 1 the magnitude of the signals grows exponentially, whlie if |α| < 1, 
we have decaying exponential.  If α is positive all terms of {x[n]} have same 
sign, but if α is negative the sign of terms in {x[n]} alternates. 

(d)Sinusoidal Signal: The sinusoidal signal {x[n]} is defined by

x[n] = A cos(w0n + φ) 

Euler’s relation allows us to relate complex exponentials and sinusoids. 

ej w0 n = cos w0n + j sin w0 n

and 
n

A cos(w0n + φ) =1/2 {  A e jφe j w0n +  A e−j φ  e−jw0n﴿ 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 
 

PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT Page 6 
 

The general discrete time complex exponential can be written in terms of real exponential and 
sinusiodal signals.Specifically if we write c and α in polar for C = |C |ej θ  and α = |α|ej w0    

then 

C αn = |C ||α|n  cos(w0 n + θ) + j|C ||α|n sin(w0 n + θ) 

Thus for |α|  = 1, the real and imaginary parts of a cmplex exponential sequence are 
sinusoidal.  For |α| < 1, they correspond to sinusoidal sequence multiplied by a decaying 
exponential, and for |α| >  1 they correspond  to sinusiodal  sequence multiplied  by a growing 
exponential. 

 
 

 Generating Signals with MATLAB 
 

MATLAB, acronym for MATrix LABoratory has become a very porplar soft- ware environment 
for complex based study of signals and systems. Here we give some sample programmes to 
generate the elementary signals discussed above. For details one should consider MATLAB 
manual or read help files. In MATLAB, ones(M,N) is an M-by-N  matrix of ones, and 
zeros(M,N)  is an M-by-N matrix of zeros. We may use those two matrices to generate impulse 
and step sequence. 

The following is a program to generate and display impulse sequence. 
>> % Program to generate and display impulse response sequence 
>> n = −49 : 49; 
>> delta = [zeros(1, 49), 1, zeros(1, 49)]; 
>> stem(n, delta) 

 
Here >>  indicates the MATLAB prompt to type in a command, stem(n,x) depicts the data 
contained in vector x as a discrete time signal at time values defined by n. One can add title 
and lable the axes by suitable commands. To generate step sequence we can use the following  
program 

>> % Program to generate and display unit step function 
>> n = −49 : 49; 
>> u = [zeros(1, 49), ones(1, 50)]; 
>> stem(n, u); 
We can use the following program to generate real exponential sequence 
>> % Program to generate real exponential sequence 
>> C = 1; 
>> alpha = 0.8; 
>> n = −10 : 10; 
>> x = C ∗ alpha. ∧ n 
>> stem(n, x) 
Note that, in their program, the base alpha is a scalar but the exponent is a 
vector, hence use of the operator .∧ to denote element-by-element power. 
Exercise: Experiment with this program by changing different values of al- 
pha (real). Values of alpha greater then 1 will give growing exponential and 
less than 1 will give decaying exponentials. 
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 Introduction to DSP 

 

 

A signal is any variable that carries information. Examples of the types of signals of interest are 

Speech (telephony, radio, everyday communication), Biomedical signals (EEG brain signals), Sound and 

music, Video and image,_ Radar signals (range and bearing). 

 

Digital signal processing (DSP) is concerned with the digital representation of signals and the use 

of digital processors to analyse, modify, or extract information from signals. Many signals in DSP are 

derived from analogue signals which have been sampled at regular intervals and converted into digital 

form. The key advantages of DSP over analogue processing are Guaranteed accuracy (determined by the 

number of bits used), Perfect reproducibility, No drift in performance due to temperature or age, Takes 

advantage of advances in semiconductor technology, Greater exibility (can be reprogrammed without 

modifying hardware), Superior performance (linear phase response possible, and_ltering algorithms can be 

made adaptive), Sometimes information may already be in digital form. There are however (still) some 

disadvantages, Speed and cost (DSP design and hardware may be expensive, especially with high 

bandwidth signals) Finite word length problems (limited number of bits may cause degradation). 

 

Application areas of DSP are considerable: _ Image processing (pattern recognition, robotic vision, 

image enhancement, facsimile, satellite weather map, animation), Instrumentation and control (spectrum 

analysis, position and rate control, noise reduction, data compression) _ Speech and audio (speech 

recognition, speech synthesis, text to Speech, digital audio, equalisation) Military (secure communication, 

radar processing, sonar processing, missile guidance) Telecommunications (echo cancellation, adaptive 

equalisation, spread spectrum, video conferencing, data communication) Biomedical (patient monitoring, 

scanners, EEG brain mappers, ECG analysis, X-ray storage and enhancement). 

 

UNIT I 

DISCRETE FOURIER TRANSFORM 

 
1.1 Discrete-time signals 

 

A discrete-time signal is represented as a sequence of numbers: 

 
Here n is an integer, and x[n] is the nth sample in the sequence. Discrete-time signals are often obtained by 

sampling continuous-time signals. In this case the nth sample of the sequence is equal to the value of the 

analogue signal xa(t) at time t = nT: 

 
The sampling period is then equal to T, and the sampling frequency is fs = 1/T . 

x[1] 

 
For this reason, although x[n] is strictly the nth number in the sequence, we often refer to it as the nth 

sample. We also often refer to \the sequence x[n]" when we mean the entire sequence. Discrete-time 

signals are often depicted graphically as follows: 
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(This can be plotted using the MATLAB function stem.) The value x[n] is unde_ned for no integer values 

of n. Sequences can be manipulated in several ways. The sum and product of two sequences x[n] and y[n] 

are de_ned as the sample-by-sample sum and product respectively. Multiplication of x[n] by a is de_ned as 

the multiplication of each sample value by a. A sequence y[n] is a delayed or shifted version of x[n] if 

with n0 an integer. 

The unit sample sequence 

is defined as 

 
This sequence is often referred to as a discrete-time impulse, or just impulse. It plays the same role for 

discrete-time signals as the Dirac delta function does for continuous-time signals. However, there are no 

mathematical complications in its definition. 

An important aspect of the impulse sequence is that an arbitrary sequence can be represented as a sum of 

scaled, delayed impulses. For 

example, the  

Sequence can be represented as 

 

In general, any sequence can be expressed as  

The unit step sequence is defined as 
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The unit step is related to the impulse by  

Alternatively, this can be expressed as 

 
Conversely, the unit sample sequence can be expressed as the _rst backward difference of the unit step 

sequence 

 
Exponential sequences are important for analyzing and representing discrete-time systems. The general 

form is 

 
If A and _ are real numbers then the sequence is real. If 0 < _ < 1 and A is positive, then the sequence 

values are positive and decrease with increasing n: 

For �1 < _ < 0 the sequence 

alternates in sign, but decreases in magnitude. For j_j > 1 the sequence grows in magnitude as n increases. 

A sinusoidal   sequence has the form 

 

 
The frequency of this complex sinusoid is!0, and is measured in radians per sample. The phase of the 

signal is. The index n is always an integer. This leads to some important 

Differences between the properties of discrete-time and continuous-time complex exponentials:  

Consider the complex exponential with frequency 
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Thus the sequence for the complex exponential 

with frequency is exactly the same as that for the complex exponential with frequency more 

generally; complex exponential sequences with frequencies  where r is an integer are 

indistinguishable 

From one another. Similarly, for sinusoidal sequences 

 
In the continuous-time case, sinusoidal and complex exponential sequences are always periodic. Discrete-

time sequences are periodic (with period N) if x[n] = x[n + N] for all n:  

Thus the discrete-time sinusoid is only periodic if which requires 

that 

 
The same condition is required for the complex exponential 

Sequence  to be periodic. The two factors just described can be combined to reach the conclusion 

that there are only N distinguishable frequencies for which the 

Corresponding sequences are periodic with period N. One such set is 

 
 

1.2  Discrete-time systems 

 

 

 

A discrete-time system is de_ned as a transformation or mapping operator that maps an input signal x[n] to 

an output signal y[n]. This can be denoted as 

 

 

 

 

 

 

Example: Ideal delay 
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Memoryless systems 

A system is memory less if the output y[n] depends only on x[n] at the 

Same n. For example, y[n] = (x[n]) 2 is memory less, but the ideal delay 

 
  Linear systems 

A system is linear if the principle of superposition applies. Thus if y1[n] 

is the response of the system to the input x1[n], and y2[n] the response 

to x2[n], then linearity implies 

 

 Additivity: 

 
  

Scaling: 

 
These properties combine to form the general principle of superposition 
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In all cases a and b are arbitrary constants. This property generalises to many inputs, so the response of a 

linear 

system to  

Time-invariant systems 

A system is time invariant if times shift or delay of the input sequence 

Causes a corresponding shift in the output sequence. That is, if y[n] is the response to x[n], then y[n -n0] is 

the response to x[n -n0]. 

For example, the accumulator system 

 
is time invariant, but the compressor system 

 
for M a positive integer (which selects every Mth sample from a sequence) is not. 

Causality 

A system is causal if the output at n depends only on the input at n 

and earlier inputs. For example, the backward difference system 

is causal, but the forward difference system 

 
is not. 

Stability 

 

A system is stable if every bounded input sequence produces a bounded 

output sequence: 

x[n] 

is an example of an unbounded system, since its response to the unit 

 
 

This has no _nite upper bound. 

  

Linear time-invariant systems 

If the linearity property is combined with the representation of a general sequence as a linear 

combination of delayed impulses, then it follows that a linear time-invariant (LTI) system can be 

completely characterized by its impulse response. Suppose hk[n] is the response of a linear system to the 

impulse h[n -k] 

at n = k. Since 
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If the system is additionally time invariant, then the response to _[n -k] is h[n -k]. The previous equation 

then becomes 

 
This expression is called the convolution sum. Therefore, a LTI system has the property that given h[n], we 

can _nd y[n] for any input x[n]. Alternatively, y[n] is the convolution of x[n] with h[n], denoted as follows: 

 
The previous derivation suggests the interpretation that the input sample at n = k, represented by 

 is transformed by the system into an output sequence . For each k, these 

sequences are superimposed to yield the overall output sequence: A slightly different interpretation, 

however, leads to a convenient computational form: the nth value of the output, namely y[n], is obtained 

by multiplying the input sequence (expressed as a function of k) by the sequence with values h[n-k], and 

then summing all the values of the products x[k]h[n-k]. The key to this method is in understanding how to 

form the sequence h[n -k] for all values of n of interest. To this end, note that h[n -k] = h[- (k -n)]. The 

sequence h[-k] is seen to be equivalent to the sequence h[k] rejected around the origin 

Since the sequences are non-overlapping for all 

negative n, the output must be zero  y[n] = 0; n < 0: 

  

 
1.3 Introduction to DFT 

 

The discrete-time Fourier transform (DTFT) of a sequence is a continuous function of !, and repeats with 

period 2_. In practice we usually want to obtain the Fourier components using digital computation, and can 

only evaluate them for a discrete set of frequencies. The discrete Fourier transform (DFT) provides a 

means for achieving this. The DFT is itself a sequence, and it corresponds roughly to samples, equally 
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spaced in frequency, of the Fourier transform of the signal. The discrete Fourier transform of a length N 

signal x[n], n = 0; 1; : : : ;N -1 is given by  

 

 

 

 
An important property of the DFT is that it is cyclic, with period N, both in the discrete-time and discrete-

frequency domains. For example, for any integer r, 

 

since  Similarly, it is easy to show that x[n + rN] = x[n], implying 

periodicity of the synthesis equation. This is important | even though the DFT only depends on samples in 

the interval 0 to N -1, it is implicitly assumed that the signals repeat with period N in both the time and 

frequency domains. To this end, it is sometimes useful to de_ne the periodic extension of the signal x[n] to 

be To this end, it is sometimes useful to de_ne the periodic extension of the signal x[n] to be x[n] = x[n 

mod N] = x[((n))N]: Here n mod N and ((n))N are taken to mean n modulo N, which has the value of the 

remainder after n is divided by N. Alternatively, if n is written in the form n = kN + l for 0 < l < N, then n 

mod N = ((n))N = l: 
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It is sometimes better to reason in terms of these periodic extensions when dealing with the DFT. 

Specifically, if X[k] is the DFT of x[n], then the inverse DFT of X[k] is ~x[n]. The signals x[n] and ~x[n] 

are identical over the interval 0 to N � 1, but may differ outside of this range. Similar statements can be 

made regarding the transform Xf[k]. 

 Note:  
1. x(t) --- Continuous-time signal 

    X(f) --- Fourier Transform, frequency characteristics 

    Can we find  




 dtetxfX ftj 2)()(  

 if we don‟t have a mathematical equation for x(t) ? No! 

 

2. What can we do?  

     (1) Sample x(t) => 

 x0, x1, … , xN-1    over  T  (for example 1000 seconds) 

 Sampling period (interval) t  

  N (samples) over T =>  NTt /  

 Can we have infinite T and N? Impossible! 

       

    (2) Discrete Fourier Transform (DFT): 

  

                 => 




 
1

0

/2 ,...,2 ,1
N

n

Nknj

nk NkexX 
 

       for the line spectrum at frequency 
T

k
k )2(    

3. Limited N and T => 

 limited frequency resolution 
T

1
2  

 limited frequency band (from   to    in Fourier transform to):  

                         TN /20    
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4. 





1

0

/21 N

k

Nknj
kn eX

N
x 

 ---- periodic function (period N) 

 x(t) --- general function 

    sampling and inverse transform  

 xn ---  periodic function 

 

 

5. 
T

k
X kk  2(   line spectrum) 







1

0

/2
N

n

Nknj
nk exX 

 period function (period N) 

 

1.4 Properties of the DFT 

 

Many of the properties of the DFT are analogous to those of the discrete-time Fourier transform, with the 

notable exception that all shifts involved must be considered to be circular, or modulo N. Defining the 

DFT pairs  and 

 
Properties 

 

1. Linearity :     )()()()( kBXkAXnBynAx   

 

2. Time Shift:     
mk

N
Nkmj WkXekXmnx

  )()()( /2
 

 

3. Frequency Shift: 

   )()( /2 mkXenx Nkmj 
 

4. Duality :         )()(1 kXnxN 
 

 why?        





1

0

/2)()(
N

m

NmkjemxkX 
 

 





1

0

/2)())((
N

n

NnkjenXnXDFT 
 

 DFT of x(m) 
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

























1

0

/2

/2/2/)(2

1

0

/)(2

)(
1

)(

)(
1

)()(

N

k

Nknj

NknjNkNjNnNkj

N

k

NnNkj

ekX
N

nx

eee

ekX
N

nNxnx




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5. Circular convolution 







1

0

)()()()()()(
N

m

kYkXnynxmnymx  circular convolution 

 

6. Multiplication 


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7.Parseval‟s Theorem 
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N
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8.Transforms of even real functions: 

)()( kXnx erer   

(the DFT of an even real sequence is even and real ) 

 

9. Transform of odd real functions: 

)()( kjXnx oior   

(the DFT of an odd real sequence is odd and imaginary ) 

 

10. z(n) = x(n) + jy(n) 

z(n)  Z(k) = X(k) + jY(k) 

 

 

Example 1-1 : 

 
3,2,1,0)2/sin()2/cos(

)()()( 2/





nnjn

enjynxnz jn
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  Four – point DFT for x(0), x(1), x(2), x(3): 

 X(0) = [x(0) + x(2)] + [x(1) + x(3)] 

 X(1) = [x(0) - x(2)] + (-j)[x(1) - x(3)] 

 X(2) = [x(0) + x(2)] - [x(1) + x(3)] 

 X(3) = [x(0) - x(2)] + j[x(1) - x(3)] 

 

  For   )2/cos()( nnx    => 

 

2)3(0)2(2)1(1)0(

0)3(1)2(0)1(1)0(
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   For   )2/sin()( nny    => 
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jYYjYY
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Example 1-2 

 DFT of )()( nnx  : 

  1,...,1,0    1)()(
1

0






NkWnkX
N

n

nk

N  

 Time-shift property 
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Example 1-3: Circular Convolution  

 101)(1)( 21  Nnnxnx  
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




1

0
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N

m
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1.5 Convolution: Linear convolution of two finite-length sequences Consider a sequence x1[n] with length 

L points, and x2[n] with length P points. The linear convolution of the 

sequences,  

Therefore L + P � 1 is the maximum length of x3[n] resulting from the 

Linear convolution.  

 

1.6 Circular Convolution: 

The N-point circular convolution of x1[n] and x2[n] is 

 
It is easy to see that the circular convolution product will be equal to the linear convolution product on the 

interval 0 to N � 1 as long as we choose N - L + P +1. The process of augmenting a sequence with zeros to 

make it of a required length is called zero padding. 

 

1.7 Filtering methods based on DFT 

1. DFT Algorithm 

 









 
1

0

/2
1

0

/2 )()()(
N

n

nkNj
N

n

Nknj enxenxkX 

  

Denote  
Nj

N eW /2  , then 







1

0

)()(
N

n

nk
NWnxkX   

 Properties of 
m

NW : 

(1) 1,1)( 200/20
   jN

N
Nj

N eWeeW  
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N WW 


       

m
N

mNj

mNjNNj
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
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(3) 1/)2//(22/
   jNNjN

N eeW  

      jeeW jNNjN
N   2//)4//(24/ 

       

      jeeW jNNjN

N   2/3/)4/3/(24/3 
 

2. Examples  

Example 1-5: Two-Point DFT 
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Example 1-6: Generalization of derivation in example 2-3 to a four-point DFT 

x(0), x(1), x(2), x(3)  
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                 

)]3()1([)]2()0([)3(

)]3()1([)]2()0([)2(

)]3()1()[()]2()0([)1(

)]3()1([)]2()0([)0(
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



 

 
 

                                                                        Two – point DFT 

 

If we denote z(0) = x(0), z(1) = x(2) => Z(0) = z(0) + z(1) = x(0) + x(2) 

                                                 Z(1) = z(0) - z(1) = x(0) - x(2) 

 

 v(0) = x(1), v(1) = x(3) => V(0) = v(0) + v(1) = x(1) + x(3) 

                                                V(1) = v(0) - v(1) = x(1) - x(3) 

 

Four – point DFT       Two-point DFT 

 

  X(0) = Z(0) + V(0) 

X(1) = Z(1) + (-j)V(1) 

X(2) = Z(0) - V(0) 

X(3) = Z(1) + jV(1) 

 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 
 

PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT Page 23 
 

 
         One Four – point DFT       Two Two – point DFT  

 

1.8  FFT Algorithms: 
Fast Fourier transforms 

The widespread application of the DFT to convolution and spectrum analysis is due to the existence of fast 

algorithms for its implementation. The class of methods is referred to as fast Fourier transforms (FFTs). 

Consider a direct implementation of an 8-point DFT: 

 

If the factors   have been calculated in advance (and perhaps stored in a lookup table), then the 

calculation of X[k] for each value of k requires 8 complex multiplications and 7 complex additions. The 8-

point DFT therefore requires 8 * 8 multiplications and 8*  7 additions. For an N-point DFT these become 

N2 and N (N - 1) respectively. If N = 1024, then approximately one million complex multiplications and 

one million complex additions are required. The key to reducing the computational complexity lies in the 

observation that the same values of x[n]   are effectively calculated many times as the computation 

proceeds | particularly if the transform is long. The conventional decomposition involves decimation-in-

time, where at each stage a N-point transform is decomposed into two N=2-point transforms. That is, X[k] 

can be written as X[k] =N 

 
The original N-point DFT can therefore be expressed in terms of two N=2-point DFTs. 

The N=2-point transforms can again be decomposed, and the process repeated until only 2-point 

transforms remain. In general this requires log2N stages of decomposition. Since each stage requires 

approximately N complex multiplications, the complexity of the resulting algorithm is of the order of N 
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log2 N. The difference between N2 and N log2 N complex multiplications can become considerable for 

large values of N. For example, if N = 2048 then N2=(N log2 N) _ 200. There are numerous variations of 

FFT algorithms, and all exploit the basic redundancy in the computation of the DFT. In almost all cases an 

Of the shelf implementation of the FFT will be sufficient | there is seldom any reason to implement a FFT 

yourself. 

 

1.9 A  Decimation-in-Time FFT Algorithm 

 

 x(0), x(1), … , x(N-1)  
mN 2  
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          ( G(k): N/2 point DFT output (even indexed), H(k) : N/2 point DFT output (odd 

indexed)) 
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Question: X(k) needs G(k), H(k),    k=… N-1  

 How do we obtain G(k), H(k), for k > N/2-1 ? 

 G(k) = G(N/2+k)                            k <= N/2-1 

 H(k) = H(N/2+k)                            k <= N/2-1 

 

 

Future Decimation  

 g(0), g(1), …, g(N/2-1)            G(k) 

 h(0), h(1), …, h(N/2-1)             H(k) 
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      even indexed g    odd indexed g 

      (N/4 point)          (N/4 point) 
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1.10  Decimation-in-Frequency FFT Algorithm 

  

        x(0), x(1), … , x(N-1)  
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let m = n-N/2   (n = N/2+m)  n = N/2 => m = N/2-N/2 = 0 

      n = N-1 => m = N-1-N/2 = N/2-1 
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)1
2

(,),0(int
2

)()(
12/

0

2/  




N
zzofDFTpo

N
WnzrZ

N

n
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N   

 

X(k) : N-point DFT of x(0), …, x(N)  two N/2 point DFT 

 

N/2 point DFT  

)(rZ  
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One N/2 point DFT => two N/4 point DFT 

   …   two point DFTs 

 

Consider N/2 point DFT 

y(0), y(1), …, y(N/2-1) 
















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14/

0
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)(1
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














  
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DFTpoNWnyrY
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rkoddk
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n
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int4/)(2)(2

)]4/()([)12()(

12:

14/

0
4/

14/

0

2
2/

)(2

2/


















  

 

 

 
 Computation 

 N – point DFT : 4N(N-1) real multiplications 

         4N(N-1) real additions 

 

 N – point FFT : 2Nlog2N real multiplications 

    (N = 2m)       3Nlog2N real additions 

 Computation ration 
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%18.0
40958

125

)1(8

log5

'

'

40962

2

12










N

N

N

nscomputatiosDFT

nscomputatiosFFT

 

 

 
 

 

 1.11Applications of FFT 

Use of FFT in linear filtering. 
1. Filtering  

x(0), …, x(N-1)  FFT (DFT) =>  

X(0), … , X(1), … , X(N-1) 

X(k): Line spectrum at )
2

(
22

1
N

T
t

TN

k

T

tk
k 








  

   (Over T: x(0), …, x(N-1) are sampled.) 

Inverse DFT: 

  















0

0

/2
^

1

0

/2

)()(

)()(

N

k

Nnkj

N

k

Nnkj

ekXnx

ekXnx





             

                                    Frequencies with 
N

N02
   have been filtered! 

Example 1-10 
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 

70
2

cos
4

cos)(

28

4
2)

2
()

2
(

8

2
21





nnnnx

NN








 

 

 x(0), x(1), …, x(7) 

 

000

)7(),2(),1(),0(

zerononzeronon

XXXX





 

 

How to filter frequency higher than 
4


? 

2. Spectrum Analyzers 

Analog oscilloscopes => time-domain display 

Spectrum Analyzers: Data Storage, FFT 

 

3. Energy Spectral Density 

 x(0), …, x(N-1): its energy definition 

 





1

0

2|)(|
N

n

nxE  

 Parseval‟s Theorem 

 





1

0

2|)(|N

k N

kx
E  
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UNIT-II  

IIR Filter design 
  

2-1 Structures of IIR 
 

   1. Direct-Form Realization 

                























m

j

j

r

i

i

m

j

j

j

r

i

i

i

jTnTykiTnTxLnTy

zk

zL

zX

zY
zH

10

1

0

)()()(

1
)(

)(
)(

 

 

 

 

The function is realized!  

What‟s the issue here? 

 

Count how many memory elements we 

need! 

 

 

 

 

 

 

 

 

 

 

 

Can we reduce this number? 

If we can, what is the concern? 





)(

1)(

0

1

0

2

1

1

1

1

)(

zH

m

j

j
j

zH

r

i

i
im

j

i
j

r

i

i
i

zk

zL

zk

zL

zH



































  

               )()()()()()( 21 zXzHzHzXzHzY   
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     Denote )()()()()()( 12 zVzHzYzXzHzV   

                                                    Implement H2(z)  and then H1(z)  ? 

 

Why  H2  is implemented? 

(1)

)()()()( 1
1 zVzkzVzkzXzV m

m
   (

2) 

)(

1

1
)(

)()()1(

1

1
1

zX

zk

zV

zXzVzkzk

m

j

j
j

m
m












 

 

                H2  is realized! 

 

Can you tell why H1  is realized? 

 

 

 

 

 

 

What can we see from this realization?  Signals at jA  and jB : always the same 

                            Direct Form II Realization 
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Example 2.1   
31

321

)2.01(

7.06.03.01
)(










z

zzz
zH  

   Solution:  
321

321

008.012.06.01

7.06.03.01
)(










zzz

zzz
zH  

 

 
Important: H(z)=B(z)/A(z)    (1) A: 1+….   (2) Coefficients in A: in the feedback channel     

 
2. Cascade Realization  

 

Factorize )1)(1)(1(7.06.03.01 3

3

2

2

1

1

321   zazazazzz  
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
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   General Form  
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
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




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
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N
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N

i iM

llll

jjjj

k

i

zdzdzc
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Apply Direct II for each! 

 

 

 

3. Parallel Realization (Simple Poles) 

 

    

polescongugate

complextherealize

D

l ll

l
l

polesreal

therealize

D

k k

k

mr

M

i

i

i
zdzd

ze
C

zC
BzAzH 























21

1
1*1

1

1
1

 If

0 )1)(1(

1

1

1
)(  

 

Example 2-1 

)
8

1
1)(

2

1
1(

)1(
)(

11

31










zz

z
zH  

 

cascade and parallel realization! 
Solution: 
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(1) Cascade: 

)1(

)
8

1
1(

1

)
2

1
1(

1
)( 1

1

1

1

1



















 z

z

z

z

z
zH  

 
(2) Parallel 

)
8

1
)(

2

1
(

)1(

)
8

1
1)(

2

1
1(

)1(
)(

3

11

31














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z
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          In order to make deg(num)<deg(den) 
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
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


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
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3

4
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)(
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2

3

2/12/1







 zz

z

z
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Partial-Fraction 

Expansion for s 
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

 zz

z
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                        z = anything other than 0, ½, 1/8, 1 B = -112 

                             For example, z=2 
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                    112]
15

8

3

343

9

8
4

45

4
[2 B  

Example 2-2: System having a complex conjugate pole pair at 
jaez   

         

          Transfer function  

                            

22122

2

11

2

)(cos21

1

)(cos2

)1)(1(

1

))((
)(

















zazaazaz

z

zaezaeaezaez

z
zH

jjjj





 

 

             
rjrj

rj

eaea
eH





 422

2

)(cos21

1
)(

 
  

 

How do we calculate the amplitude response 

|)(| 2 rjeH 
  and  )( 2 rjeH   ? 

 

How the distance between the pole and the unit circle influence |H|  and 

H ? 
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How the distance between the pole and 

the unit circle influence H ?   

         a1         

  

 

How the pole angle   influence  H  

and H ? 

 

 

  See Fig. 9-7 
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2-3 Discrete-Time Integration 
 

   A method of Discrete-time system Design: Approximate continuous-time system  
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   Integrator    
t

dxty
0

)()(    a simple system  

                                       system input 

                      Output  

  

 Discrete-time approximation of this system: discrete-time Integrator 

 

1. Rectangular Integration 

          


t

t

t t

t

t

dxtydxdxdxty
0

0

0

)()()()()()( 0
00

  

                                                                          

                                                                          change of y from t0 to t : ),( 0 tty  

 

t = nT,  t0 =  nT- T 

             
),()(                

)()()(

nTTnTyTnTy

dxTnTynTy
nT

TnT



  


 

 

T small enough => )()( TnTxx   

                         

)(                          

)(                          

)()(

TnTTx

dTnTx

dTnTxdx

nT

TnT

nT

TnT

nT

TnT



















 

 

             )()()( TnTTxTnTynTy   

                    A discrete-time integrator: rectangular integrator 

 

                          

1

1

11

1)(

)(
)(

)()()(












z

Tz

zX

zY
zH

zTXzzYzzY

 

 

 

Constant ]),[( nTTnT   

Constant  y(nT) : System output 

x(nT) : System input , to be 

integrated 
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2. Trapezoidal Integration 

                 

))()((
2

2

)()(
)(

nTxTnTx
T

d
nTxTnTx

dx
nT

TnT

nT
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2
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T
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T
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   or  
  
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
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3. Frequency Characteristics 

 

2.4 Rectangular Integrator 

1
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1
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

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zH r  

Frequency Response  
2/sin21

)(
2/

2/2/

2/

Tj

Te

ee

Te

e

Te
eH

Tj

TjTj

Tj

Tj

Tj
Tj

r





























  

Constants 
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                       Or  rj

Te
eH

rj
rj

r





sin2
)( 2



                             



























rT

r

T

s

s







2

/

1
2

 

      Amplitude Response 

                                    )0(sin   
2

1
0

sin2
)(  rr

r

T
rAr 


 

      Phase Response 

               
2

1
0

2
)(   rrjer rj

r




 

 
Trapezoidal Integrator 

                 1

1

1

1

2
)(










z

zT
zH t  

      Frequency Response 

        

rj

rT

rj

rT

ee

eeT

e

eT
eH

rjrj

rjrj

rj

rj
rj

t


















sin

cos

2sin2

cos2

2
             

21

1

2
)(

2

2
2





















 

             Amplitude:  
2

1
0

sin2

cos
)(  r

r

rT
rAt




 

             Phase: 

                 













0cos

0sin
      

2

1
0

2
)(

r

r
rrt




 

2.4.2 Versus Ideal Integrator 

Ideal (continuous-time ) Integrator 

               

2
)(

2

1
)(              

2

1
)(               

22
1

)(


















r
rf

rA

rfj
rH

rff
j

jH

s

s

s

 

when T=1 second  (Different plots and relationships will result if T is different.) 
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 Low Frequency Range )12(1  rT   

       (Frequency of the input is much lower than the sampling frequency:  

                                                                                                It should be!) 

       
s

t
rfr

T
rA

rr

r





2

11

2
)(

1

sin

cos
  

       
s

r
rfr

T
rA

rr  2

1

2
)(

1

sin

1
  

 

 High Frequency: Large error  (should be) 

 

Example 2-4  Differential equation (system) 

                   )()( tytx
dt

dy
  

         Determine a digital equivalent. 

 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 
 

PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT Page 45 
 

Solution  

        (1) Block Diagram of the original system 

        (2) An equivalent 

        (3) Transfer Function Derivation 

              

     

1

1

1

1

1

1

1

1

)2()2(

)1(

)(

)(
)(

)(
1

1

2
)(

1

1

2
1

))()((
1

1

2
)(



















































zTT

zT

zZ

zY
zH

zX
z

zT
zY

z

zT

zYzX
z

zT
zY







 

 

 

 

Design:  2-4  Find Equivalence of a given analog filter  (IIR): 

        Including methods in Time Domain and Frequency Domain. 

2-5  No analog prototype, from the desired frequency response: FIR 

2-6 Computer-Aided Design 

2.2   IIR Filter Design 

‹  Normally done by transforming a continuous-time design to discrete-

time 
 

„  many “classical” continuous-time filters are known and coefficients 

„  tabulated 
 

• Butterworth  
• Chebyshev  
• Elliptic, etc.  

„  possible transformations are 
 

• Impulse invariant transformation  
• Bilinear transformation 

‹  Butterworth Filters 
 

„   maximally flat in both passband and stopband 

•  first  2N − 1 derivatives of 
 

H( jΩ) 
 2

 are zero at Ω  0 and  Ω  ∞ 
 

  
 

  
H (jΩ) 

 
2  

 
1  

    
 

             
 

    

      Ω  
2
 
N
 

 

    
 

   1    
 

  

         Ωc  
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   1,  for Ω  0 
 

 1 2 ,  for Ω  Ωc 
 

   1  Ω 
N

 , for Ω  Ωc 
 

 
„  2N poles of H(s)H(−s) equally spaced around a circle in the s-plane of radius Ωc 

symmetrically located with respect to both real and imaginary axes  
•  poles of  H(s) selected to be the N poles on the left half plane of s 

 
„  coefficients of a continuous-time filter for specific order and cutoff 

frequency can be found 
 

• from analysis of above expression 
 

• from tables 
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2-3 Infinite Impulse Response (IIR) Filter Design  
                 (Given H(s)  Hd(z) ) 

2.3.1  A Synthesis in the Time-Domain: Invariant Design 

1. Impulse – Invariant Design 

(1) Design Principle 

 

 
 

(2) Illustration of Design Mechanism  (Not General Case) 

Assume: 

(1) Given analog filter  (Transfer Function) 


 


m

i i

i
a

ss

K
sH

1

)(   (a special case) 

 (2)  Sampling Period T    (sample ha(t) to generate ha(nT)) 

 

     Derivation: 

(1) Impulse Response of analog filter 




 
m

i

ts

iaa
ieksHLth

1

1 ))(()(  

 

(2) ha(nT):  sampled impulse response of analog filter 











m

i

nTs
i

m

i

nTs
ia

ii ekeknTh
11

)()(  

 

(3) z-transform of ha(nT) 

      

               Sampled impulse response of analog filter 
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 



















 
















m

i
Ts

i
m

i
Tsi

m

i n

nTs

i

n

m

i

nnTs

i

n

n

aa

ze

k

ze
kzek

zekznThnThZ

ii

i

i

1
1

1
1

1 0

0 10

11

1
)(                                           

)()())((

 

(4) Impulse-Invariant Design Principle 

))(())(()()( nThZnThZnThnTh aa   

 

Digital filter is so designed that its impulse response h(nT) 

equals the sampled impulse response of the analog filter ha(nT) 

 

Hence, digital filter must be designed such that  

   

















m

i
Ts

i

m

i
Ts

i
a

ze

k
zH

ze

k
nThZnThZ

i

i

1
1

1
1

1
)(

1
))(())((

 

 

   (5) ))(())((
0

thLnThTZ a

T

ez Tj








  (scaling) 

=> 






m

i
Ts

i

ze

k
TzH

i
1

11
)(  

 

(3) Characteristics 

(1) )()(  jHzH aez Tj 


 when T 0 

         

       frequency response of digital filter 

 

(2) )()(0  jHzHT aez Tj 


 

 

(3) Design:   Optimized for T = 0  

  Not for T   0  (practical case) (due to the design principle) 

(4) Realization: Parallel 

 

z-transfer function 

)(zH  of the digital 

filter.   Of course, 

the z-transfer 

function of its 

impulse response. 
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 (5) Design Example   sT
s

sHa 2
1

1
)( 


  

       Solution: 1 ,1 ,1 11  sKm  

   1212
1

1 1

2

1

1
2

1
)(




 






 

zezeze

K
TzH

m

i
Ts

i

i
 

  

2. General Time – Invariant Synthesis 

Design Principle 

 

 

 

 

 

 

 

 

 

 

 

(1) Derivation 

Given:  Ha(s)

 

 transfer function of analog filter 

Xa(s)   Lapalce transform of input signal of analog Filter 

   T   sampling period 
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 Find     H(z)   z-transfer function of digital filter 

   

(1) Response of analog filter xa(t) 

)]()([)( 1 sXsHLty aaa
  

  

 (2) ya(nT)   sampled signal of analog filter output 

   
nTtaaa sXsHLnTy



 ])()([[)( 1
 

  (3) z-transform of ya(nT) 

   }])()([{[)]([ 1

nTtaaa sXsHLZnTyZ


  

  (4) Time – invariant Design Principle 

)]([))(()()( nTyZnTyZnTynTy aa   

 
Digital filter is so designed  

that its output equals the sampled 

output of the analog filter 

 

    Incorporate the scaling : 

                    )]([)]([

)()(

nTyZGnTyZ a

TGzXzH 




 

                        
                               z-transfer function of digital filter 

            (5) Design Equation 

                                  }]))()(({[
)(

)( 1

nTtaa sXsHLZ
zX

G
zH



  

                  special case X(z)=1, Xa(s) = 1  (impulse) 

                                   => }]))(({[)( 1

nTta sHLGZzH


  

             (6) Design procedure 

            A: Find )()]()([1 tysXsHL aaa 
 (output of analog filter) 

            B: Find  
nTtaa tynTy


 )()(  

            C: Find ))(( nTyZ a  

            D: ))(()( nTyGZzH a  

Example 3  
)2)(1(

)4(5.0
)(






ss

s
sHa  

      Find digital filter H(z) by impulse -  invariance. 

   Solution of design: 

(1) Find  )()]()([1 tysXsHL aaa 
 

T 
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2

1

1

5.1

)2)(1(

)4(5.0
)(

1)(














ssss

s
sH

sX

a

a

 

  
tt

aaa eesXsHLty 21 5.1)]()([)(    

 

(2)  Find  
nTtaa tynTy


 )()(  

nTnT
a eenTy )()(5.1)( 2   

 

(3) Find ))(( nTyZ a  

 
121 1

1

1

5.1
))((

 





zeze
nTyZ

TTa  

 

(4) Find z-transfer function of the digital filter  

 
















 121 1

1

1

5.1

))(()(

zeze
G

nTyGZzH

TT

a

 

 

     use G = T 

121 11

5.1
)(

 





ze

T

ze

T
zH

TT
 

(5) Implementation 

 

 

 

 

 

 

 

 

Characteristics 

 

    (1)  Frequency Response equations: analog and digital 

 

Analog : 
)2)(1(

)4(5.0
)(






jj

j
jHa




  

Digital :  
TjTTjT

Tj

ee

T

ee

T
eH





 





211

5.1
)(  
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     (2)  dc  response comparison ( 0 ) 

 

Analog: 1
21

45.0
)0( 




aH  

Digital:  
TT

j

e

T

e

T
HeH

2

0

11

5.1
)1()(

 



  

                                                      Varying with T (should be) 

 

              :0T     Te T  1 ,    Te T 212 
 

                                1
)21(1)1(1

5.1
)1( 







T

T

T

T
H  

             :0T  for example  )20(31416.0
20

2
 sfsT


 

                          7304.0Te ,    5335.02  Te  

                         0745.1)1( H      good enough 

        (3) |)(| jHa   versus    |)(| TjeH 
 : ondT sec 31416.0

20

2



 

     Using normalized frequency ssffr  //   

 

                 

     

)(                                                      

2
22

54

16
5.0)(|

4cos77932.02cos51275.374925.2

2cos06983.025488.0

10
|)(|

42

2

2

rH

r
T

rffjH

rr

r
eH

a

sa

rj

























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(4) H   versus   aH  

 
(5)  Gain adjustment when 0T  

 0T  => frequency response inequality 

 adjust G =>  )()(  jHeH a
Tj    at a special   

 for example  0  

  If G = T = 0.3142 => 0745.1|)( 0
TjeH  

  If  selecting G = T/1.0745 => 1|)( 0
TjeH  

 

3. Step – invariance synthesis 

            
s

sX a

1
)(     

11

1
)(




z
zX  
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}|)]](
1

[{[)1()(

}|)]]()([{[
)(

)(

11

1

nTta

nTtaa

sH
s

LZzGzH

sXsHLZ
zX

G
zH











 

Example 9-6
)2)(1(

)4(5.0
)(






ss

s
sHa .   Find its step-invariant equivalent. 

Solution of Design 

      
2

5.0

1

5.11

)2)(1(

)4(5.0
)(

1












ssssss

s
sH

s
a  

  

        
nTnT

nTtanTtaa eesH
s

LtynTy 21 5.05.11|)](
1

[|)()( 



   

               

1211

1

1

1

5.0

1

5.1

1

1
)(1(

)]([)1()(


















zezez
zG

nTyZzGzH

TT

a

 

        

  Comparison with impulse-invariant equivalent. 

 

 

2-5  Design in the Frequency Domain --- The Bilinear z-transform 

 
1. Motivation  (problem in Time Domain Design) 
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)(

)(

fX

tx

   



















)]([)([)(

)()(

)(

11 ssn

n
sns

s

ffXCffXCfXC

nffXCfX

nTx

 

Introduced by sampling, undesired! 

 

                 x(t)  bandlimited ( )0)2/(  sffX   

 

                                                                                          

)()( fXfX s  

 

for 
2

|| sff   

 

 

 )()( ss ffXfX   

for 
2

|| sff   

 

 

 

 

 

Consider digital equivalent of an analogy filter Ha(f):          )2()( fjHjH aa   ) 

 

      Ha(f): bandlimited => can find a Hd(z) 

      Ha(f): not bandlimited => can not find a Hd(z)    Such that )()( 
a

Tj
d HeH   

2. Proposal:  from   axis to 1   axis 

s 5.01        ( s : given sampling frequency)   

(s plane to s1 plane) 
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Observations: (1) Good accuracy in low frequencies 

                       (2) Poor accuracy in high frequencies 

                       (3) 100% Accuracy at 
*

1    

                                                      a given specific number such that 0.01 s  

Is it okay to have poor accuracy in high frequencies? Yes! Input is bandlimited! 

    What do we mean by good, poor and 100% accuracy? 

         Assume (1)
1

1
)(







j
H a       (originally given analogy filter) 

                      (2) The transform is 1tan915244.0    

         Then,
1tan915.0

1

1 j
 is a function of 1 . Denote )(

~

1tan915.0

1
1

1




aH
j




. 

              Good accuracy:                        

                         )3.0(
~

128.0

1

1)3.0tan(915.0

1

13.0

1
)3.0( 1 








  aa H

jjj
H  

               Poor Accuracy 

                         )5.1(
~

19.12

1

1)5.1tan(915.0

1

15.1

1
)5.1( 1 








  aa H

jjj
H  

               100% Accuracy (Equal) 

                         )5.0(
~

15.0

1

1)5.0tan(915.0

1

15.0

1
)5.0( 1 








  aa H

jjj
H  

  

 Is )(
~

1H  bandlimited?  That is, can we find a 1  such that )(
~

1H =0?   

           Yes, 2/1   .   We have no problem to find a digital equivalent 

          )(
~

)( 1
1 

a

Tj

d HeH   without aliasing! 
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          Let‟s use )(L as a number (for example 0.2) representing any low frequency,       

            Then, because )2.0(
~ )( L

aH   is a good approximation of )2.0( )( L

aH  ,          

                        )( )2.0( )( Tj

d

L

eH 
)2.0( )( L

aH   should be a good approximation.     

A digital filter can thus be designed for an analogy filter )(aH  which is not bandlimted! 

 

Two Step Design Procedure:  

   Given: analogy filter )(sH a  

  (1) Find an bandlimited analogy approximation ( )(
~

1sH a ) for )(sH a   

  (2) Design a digital equivalent ))(( zH d  for the bandlimited filter )(
~

1sH a . 

                          Because of the relationship between ( )(
~

1aH ) for )(aH , 

                                     )(zH d  is also digital equivalent of )(sH a .  

         The overlapping (aliasing) problem is avoided!  

    The designed digital filter can approximate )(aH  (for 1   and   take the   

    same value) at low frequency.  

3.    axis to 1  axis (s plane to s1 plane) transformation 

Requirement : 
2

1
s

      ( s  is given sampling frequency.) 

Proposed transformation : 

         
2

tan
2

2

1
tan 11 T

CC

s






 

















  

Effect of C: 

 We want the transformation map 

 r   (for example, sradr /100 ) to r 1   )( *  

               =>  
2

cot
2

tan
T

C
T

C r
r

r
r





   

                    i.e. when the sampling period T is given, C is the only parameter  

                     which determines what      will be mapped into 1  axis with the  

                       same value.  

Example: 
22

2

2
)(

cc

c
a

ss
sH






  

      





cc

c
a

j
jH

2)(
)(

22

2


  not bandlimited 

 

If we want to map  1002    to  10021    

Variable in    

domain 

Variable in 1   

domain 

Constant 
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  200r  

2

200
cot200

T
C


  

  Hence, for any given T or 
T

s

1
2   

         

cc

c

aa

T
Cj

T
C

TT
jH

T
jCH



















2
tan2)

2
tan(

                        

)
2

tan)
2

200
cot200(()

2
tan(

11222

2

11

 

                is bandlimited as a function of  1   by 
T

s 
 

2
|| 1  

  )()
2

tan()(
~ 1

1 


 jH
T

jCHH aaa 


 when   1  at low frequencies.  

               Further  )200()200(
~

1  jjjHH rara   

Exactly holds! 

 

How to select  r  or sampling frequency  s  at which  1 ? 

                (1) 
2

rT
  should be small? 

                      why? 
ssf

T


21
   sr

s

rrT 



 or     11

2
,  

                                     (The accuracy should be good at low frequencies) 

  

              (2) When r  is given or determined by application, s  should be large  

              enough such that  sr    to ensure the accuracy in the frequency  

              range including  r  

When :1
2


Tr

 

      
TT

C
r

r

22



   since     

x
x

1
cot       for small x.  

 

4. Design of Digital Filter using bilinear z-transform  

 A procedure: (1)  )(
~

)( 1 aa HjH   

                            

(not bandlimited, (bandlimited, 

original analog)  analog) 
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               or    )(
~

)( 1sHsH aa   

        (2)  zead TssHzH



1

|)(
~

)( 1  

                            

        (Transfer           replace  
Ts

e 1
 by z 

      function of  

    digital filter) 

 

* Question: Can we directly obtain Hd(z) from Ha(s) ?   Yes! (But how?) 

 

 Bilinear z-transform  

Preparation : (1) 
jxjx

jxjx

ee

ee
j

x

x
x










cos

sin
tan  

 (2)  
2

tan 1TC


           

Hence,   

22

22
1

11

11

)(
2

tan
T

j
T

j

T
j

T
j

ee

ee
jC

T
C















  

Replace  j   by s , 1j   by s1      ( 11,/ jsjsjs   ) 

      

Ts

Ts

TsTs

TsTs

TsTs

TsTs

e

e
C

ee

ee
Cs

ee

ee
jCjs

1

1

11

11

11

11

1

1
2/2/

2/2/

2/2/

2/2/




























 

 

Replace   ze
Ts
1  for digital filter 

  









1

1

1

1

z

z
Cs  direct transformation from s to z (bypass s1) 

       

   Example     
22

2

2
)(

cc

c
a

ss
sH






  

 Digital Filter 

         

2122212

212

2

1

1

21

21
2

2

)1()1(2)1(

)1(

1

1
2

)1(

)1(
)(





























zzzC

z

z

z

z

z
C

zH

cc

c

cc

c

d









 

Bilinear z – 

transformation 
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C: only undetermined parameter in the digital filter. 

To determine C:   (1)        )( sT   

        (2)       r    (related to the frequency range of interest) 

    Example :     
22

2

2
)(

cc

c
a

ss
sH






  

    c  : break frequency 

    Take   cr     

Consider  )5002(500  cc Hzf  

      sec)0005.0
1

(2000 
s

s
f

THzf  

                                     C determined => Hd(z) determined 

                 2

21

171573.01

292893.0585786.0292893.0
)(










z

zz
zH d

 

                 )( 2 rj
d eH 

, |)(| 2 rj
d eH 

,  )( 2 rj
d eH   

To compare the frequency response with the original analog filter Ha : 

                     )8()2()2()(
4

ca

ff

saaa rfjHrfjHfjHjH
cs




  

                                            (    replace s by  )(8 sHinrfj ac ) 

                                       || aH ,   aH  
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                              Too low fs  =>  poor accuracy  in fc.  
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2-6  Bilinear z-Transform Bandpass Filter 
 

1. Construction Mechanism 

(1) From an analog low-pass filter Ha(s) 

                   to analog bandpass filter )(
22

b

c
a

s

s
H




 

i.e., replace s by 
b

c

s

s




22 

  to form a bandpass filter 

 

For example  
1

1
)(




s
sHa  low-pass 

1

1
22




b

c

s

s




 band-pass 

 

 Why?  Original low-pass 

  )( jHa  

  

       Low => High Gain 

       High => Low Gain 

 

         After Replacement 

                      )()(
2222

b

c
a

b

c
a jH

j
H







 



 

                         high     
bbb

c












 




222

   => high  => low gain 

                         low      







 bc

b

c /
222




    => high  => low gain 

(2) From analog to digital 

Replace s in  )(
22

b

c
a

s

s
H




  by  

1

1

1

1








z

z
C  

                         )( 1zHd  

    for example 

In the low pass filter 
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1

1

1

)1(

)1(

1

1

1

1

1

2

21

21222
























b

c

b

c

z

z

z

zC

s

s







      

 

2. Bilinear z-transform equation 

Analog Low-pass                 Bandpass (analog) 

s     
b

c

s

s




22

             


  

 

)1(

)1()1(
               

1

1

1

1

           

2

212212

1

1

2

2

1

1














































zC

zzC

z

z
C

z

z
C

b

c

b

c









      

 

                       
2

21

22

22

22

2

212212

1

21

                

)1(

)1()1(
            





































z

zz
C

C

C

C

zC

zzC

c

c

b

c

b

c













 

                                                              
2

21

1

1
               










z

zBz
A        

                                                                                      with 

22

22

22

2
c

c

b

c

C

C

C

C
A

















B

 

 

 

 

 

3. How to select ( bcC  ,, ) for bandpass filter 

          (design) 

Important parameters of bandpass 

(1)  center frequency  c  

digital bandpass filter 

Direct Transformation  

         s   (in low-pass) 

  

          s   (in low-pass) 
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(2)  u   upper critical frequency 

(3)  l    low critical frequency 

     

  Selection of  c  for bandpass: luc  
2

 

 

  Design of ( bcC  ,, )  

 We want   
2

tan
T

C u
u


  , Also want  

2
tan

T
C l

l


   

                               

                              one parameter C => impossible 

 solution   
2

tan
2

tan22 TT
C lu

c


   

 bandwidth  
2

tan
2

tan
T

C
T

C lu

b


   

  Hence, A and B can be determined to perform the transform. 

 

4. Convenient design equation 

2
tan

2
tan

2
tan

2
tan1

)
2

tan
2

(tan

2
tan

2
tan

2

22

TT

TT

TT
C

TT
CC

A

lu

lu

lu

lu



















 

 

why no C?  

 

  

2
tan

2
tan1

2
tan

2
tan1

2

2
tan

2
tan

2
tan

2
tan

2
22

22

TT

TT

TT
CC

TT
CC

B

lu

lu

lu

lu




















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2
)cos(

2
)cos(

2
)cos(

)cos(

tantan1

tantan1

T

T

lu

luyx

yx

yx

yx



















 

2

21

1

1









z

zBz
As  

 

Example :
)1()1(

1

1

1

11
221

2

2

21 





 










 zzBzA

z

z

zBz
A

s 


  

 

5. In the normalized frequency 

Reference frequency: sampling frequency )( ssf   

 
s

u

s

u

u
f

f
r 






   

s

l

s

l

l
f

f
r 






 

       => u
s

u

u r
f

f
T







2

1
2

2
,   l

l r
T





2

                                  

        =>















)(cos

)(cos
2

)(cot

lu

lu

lu

rr

rr
B

rrA







 

s  => 
2

21

1

1








z

zBz
A  

Example :  Lowpass  
1

1
)(




s
sHa   

Transfer function of bandpass digital filter 

    

1
1

1

1
)(

2

21









z

zBz
A

zHd  

A and B? Determined by design requirements. 

      








Hzf

Hzf

l

u

500

1000
  sampling frequency   fs = 5000Hz 

 








1.0/

2.0/

sll

suu

ffr

ffr
  

In low-pass 

In low-pass 
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 
2360680.1

)1.02.0(cot

)1.02.0(cot
2

0776835.3)1.02.0(cot















B

A

 

 
21

2

0776835.28042261.30776835.4

1
)(










zz

z
zH  

)( 2 rjeH 
,  |)(| 2 rjeH 

,   )( 2 rjeH   
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UNIT-III 

FIR FILTER DESIGN 
 Design of Finite-Duration Impulse Response (FIR) Digital Filter 

 

Direct Design of Digital Filters with no analog prototype. 

          Can we also do this for IIR? Yes!  

3.1 Structures of FIR : 
 M 

‹  System function H ( z )  ∑bk z−
k

 

 k 0 
 M 

‹  Difference equation y ( n )  ∑bk x ( n –k ) 
k 0 

 

„  Output is weighted sum of current and previous M inputs 
 

„  The filter has order M 
 

„  The filter has M+1 taps, i.e. impulse response is of length M+1 
 

„  H(z) is a polynomial in z
-1

 of order M 
 

„  H(z) has M poles at z = 0 and M zeros at positions in the z-plane 

determined by the coefficients bk 

 

 Direct Form FIR Filter 
„   

„   

x ( n) z−1 z−1  z−1  
 

          

b ( N − 1) 

 

  b( 0)   b(1) b( 2) b ( N − 2) 
 

„   
„  y ( n) 
„   
„   
„   
„   
„   
„   
„   
„   
„   

„  „   Also known as moving average (MA) and non-recursive 

 

 

‹  Direct Form 1 IIR Filter (for M=N)      
 

 

 

x ( n) 

 

 

  

 

 

b( 0)           

 

 

y ( n ) 
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z−1 

 

b(1) 

   

a1 

 

z−1 

 
 

    

 

 
 

     
 

x ( n − 1)      y ( n − 1)  
 

           
 

z−1 

 

b( 2) 

   

a( 2) 

 

z−1 

  

    

 

 
 

     
 

x ( n − 2)      y ( n − 2)  
 

           
 

x ( n − M  1) 
 b ( M − 1)    a ( N − 1)  y ( n − N  1)  

          
 

               

z−1 
 

b ( M ) 

   

a ( N ) 
 z−1 

 
 

     
 

x ( n − M )      y ( n − N )  

           

 
 
 
 
 

3.2 Linear Phase FIR Filters 

 

‹  For causal linear phase FIR filters, the coefficients are  

symmetric 
h (n )  h ( N − 1 −n)  

 
 

 

„  Linear phase filters do not introduce any phase distortion 
 

k they only introduce delay 
 

l The delay introduced is ( N − 1) / 2 samples 
 

„  Zeros occur in mirror image pairs  

k if z0 is a zero, then 1 z0 is also a zero 
 

„  Symmetry leads to efficient implementations 
 

k N/2 multiplications (N even) or (N+1)/2 multiplications (N odd) per output sample 

instead of N for the general case. 

l  

„   
„   

 
3.2 -A  A few questions 

1. How are the specifications given? 

 

               By given )(A  and  )(  
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2. What is the form of FIR digital filter? 

Difference Equation      
k

kTnTxkThnTy )()()(  

(What is T ?  sampling period) 

 

     Transfer function   


k

kzkThzH )()(  

3. How to select T ? 

4. After T is fixed, can we define the normalized frequency r and  

)(rA  and  )(r  ?  Yes! 

 

 

Can we then find the desired frequency response 
)()()( rjerArH    ?  Yes! 

5. Why must  H( r ) be a periodic function for digital 

filter? 

 H( r ) = H ( n + r )  ?  Why? What is its period? 

 

 
period sampling he         t

not  period, )'((  1 srHTr 
 

r is not 

time 
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6. Can H( r )  be expressed in Fourier Series ?  Yes! 

     How? 

 

    See general formula : 

  













n

t
T

jn

n
n

tfjn
n

n

tjn
n eXeXeXtx 000

2

2
)(




 

  





2/

2/

2

00

0

0

0

0

0 )(
1

)(
1 T

T

t
T

jn

T

tjn

n dtetx
T

dtetx
T

X





 

 

In our case for H(r): 

















10T

rt

Hx

  

















2/1

2/1

 2

 2

)(

)(

drerHX

eXrH

rjn

n

n

rjn

n





 

 

              What does this mean?  Every desired frequency response H(r) of digital  

                   filter can be expressed into Fourier Series !  Further, the coefficients of  

                          the Fourier series can be calculated using H(r)! 

 

3-2 -B  Design principle 

 





n

rjn

neXrH  2)( 

 

 Denote   





























2/1

2/1

 2

 2

)()(

)(  )(
)(

drerHXnTh

enThrH
XnTh

rjn

nd

n

rjn

d

nd





 

  Consider a filter with transfer function 






n

n
d znTh )(  

 What‟s its frequency response ?  

   )()())((  2 2 rHenThenTh
n

rnj

d

n

nrj

d  









 
 

 

   given specification of digital filter‟s frequency response! 

3-3 C   Design Procedure 

(1) Given H(r) 

  0 : sampling frequency? No!      0T  : period of )(tx  
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          (2) Find H(r)’s Fourier series   





n

rnj

d enThrH  2)()( 
 

  where 
2/1

2/1

 2)()( drerHnTh rjn

d


 

(3)  Designed filter‟s transfer function 

  






n

n
d znTh )(     

                    What‟s hd(nT) ? Impulse response!   

Example 3-1: ) 2cos1(
2

1
)( rrH   

 Solution : 

(1) Given )(rH : done 

(2) Find )(rH ‟s Fourier series   

 





n

rjn

d enThrrH  2)()2cos1(
2

1
)(   

  where  
2/1

2/1

2)2cos1(
2

1
)( drernTh rjn

d
  

n = 0    

2

1
2cos

2

1

2

1
)2cos1(

2

1
)0(

2/1

2/1

2/1

2/1

2/1

2/1
  

rdrdrdrrhd  0n  
























2/1

2/1

)1(2
2/1

2/1

)1(2

2/1

2/1

2
 2 2

2/1

2/1

 2

4

1

4

1

22

1

2

1
)(

dredre

dre
ee

drenTh

rnjrnj

nrj
rjrj

rjn

d








 

1,00)(     

4

1

4

1
)(     

4

1

4

1
)(

2/1

2/1

2/1

2/1















nnTh

drTh

drTh

d

d

d

 

                           














 






2||,0)(,
4

1
)(,

2

1
)0(

4

1

2

1

4

1
)()(  2 2 2

nnThThh

eeenThrH

ddd

rjrj

n

rnj

d



 

 

(3) Digital Filter 

111

4

1

2

1

4

1
)()0()()( 





  zzzThhzThznTh ddd

n

n

d     

 

3.4-D  Practical Issues : Infinite number of terms and non-causal 
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(1) 





n

n
dnc znThzH )()(     

Truncation => ))()(()()( 








 
n

n

dr

M

Mn

n

dnc znThnwznThzH  

  Rectangular window function 

         









Mn

Mn
nwr

||0

||1
)(  

 Truncation  window 

 

 Effect of Truncation (windowing): 

  Time Domain: Multiplication ( h and w ) 

 Frequency Domain: Convolution 

      
r

rM
eew

M

Mn

rnjrj

r
 sin

)12(sin
)(   2 2



 
 




 

(After Truncation: The desired frequency Hr 

 rr wH  frequency response of truncated filter ) 

The effect will be seen in examples! 

(2) Causal Filters: 

             






 
M

Mn

nM

d

M

Mn

n

d

M

c znThznThzzH )()()()(  

      k = n+M 



M

k

k
dc zMTkThzH

2

0

)()(  

     Define )( MtkThL dk           



M

k

k
kc zLzH

2

0

)(  

Relationship:   
M

ncc zzHzH  )()(  

Frequency Response  







 

Mrrr

rArA
eeHeH

ncc

nccMrjrj

nc

rj

c




2)()(

)()(
)()( 222

 

Design Examples 

Hamming window:  













Mn

Mn
M

n

nwh

||0

||cos46.054.0
)(



 

 

Example 3-2  Design a digital differentiator 

Step1 : Assign )(rH  

)(rH  should be the frequency response of the analog differentiator  

  H(s) = s 

2M+1 terms 
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                              => Desired  rfjjrH s
rff

f

s

 2|)(  2   

  

Step2 : Calculate  hd(nT) 

          

   

 nj
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f
n

n

f

ee
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f
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f

e
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r
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r

r
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s
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2
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 2                             
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


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


 
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





































 

 

 

                  



















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a

b

a

b

a
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00
sin

lim
2

/)(

/)cos(
lim

2

cos
lim

2

]sin[

lim

2

0

0

0

2
0





















n
nf

dnnd

dnndf

n
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nn
dn

d

f

n

s

n

s

n

s

n
s

















 

     i.e., 













00

1)1(
)(

n

n
n

f

nTh

ns

d
 

 

Step 3: Construct nc filter with hamming window (M=7) 
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)()(

)()1()()1()(

7
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1
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n
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h
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n
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


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








 
 

 

 

 

 
 

Example 3-3: Desired low-pass FIR digital filter characteristic 

             








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 












0
3.0sin

)(

3.0)0(

n
n

n
nTh

h

d

d



  

 

NC filter with 17 weight’s window: 



8

8

)()()(
n

n

hdNC znwnThzH , )(8 zHzH NCC
                    
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Example 3-4  (90
o
 phase shifter) 


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Fig.  Amplitude response of digital 90 degree phase shifter 
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UNIT 4 
FINITE WORD LENGTH EFFECTS 

 
 The digital signal processing algorithms is realized either with special purpose hardware or 

as programs for general purpose digital computer. 
 In both cases, the numbers and coefficients are stored in finite length registers. 


 Coefficients and numbers are quantized by truncation and rounding off when they are 

stored. 
 Errors due to quantization 

„ Input quantization error (in A/D conversion process)  
„ Product quantization error (in multiplier)   

„ Coefficient quantization error (in filter design)  

 
4.1 Number representation: 

 
A number N is represented by finite series as 

 
n 

N  ∑cir
i
  

in1
2
   

r = 10 for decimal representation  
1 

30.285  ∑ci10
i
 

i 3  

= 3 x 10
1
 + 0 x 10

0
 + 2 x 10

-1
 + 8 x 10

-2
 + 5 x 10

-3
  

 
r = 2 for binary representation 

 

110.010 = 1 x 2
2
 + 1 x 2

1
 + 0 x 2

0
 + 0 x 2

-1
 + 1 x 2

-2
 + 0 x 2

-3
 

= (6.25)10  

 

1. Convert the decimal number 30.275 to binary form.  

 

 Integer part  Remainder  Fractional part Integer Binary 
 

           part number 
 

30 / 2 = 15 0 0.275 x 2 = 0.550 0  
 

15 / 2 = 7 1 0.55 x 2 = 1.10 1  
 

7 / 2 = 3 1 0.1 x 2 = 0.2 0  
 

3 / 2 = 1 1 0.2 x 2 = 0.4 0  
 

1 / 2 = 0 1 0.4 x 2 = 0.8 0  
 

     Binary 0.8 x 2 = 1.6 1  
 

     

number 
 

 

     
0.6 x 2 = 1.2 1 

 
 

       
 

      0.2 x 2 = 0.4 0  
 

     (30.275)10= (11110.01000110)10      
 

 
 
 
Types of number of representation.  

 Fixed point representation 
 Floating point representation 
 Block floating point representation 
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4.1.1 Fixed point representation:  
 The position of the binary point is fixed 


 The negative numbers are represented in  Sign 

magnitude form 
O One‟s complement form O 

Two‟s complement form 
 

Sign magnitude form: 
 
 

Sign Magnitude 
 
 

 MSB is set to 1 to represent the negative sign 
 Zero has two representations 
 With „b‟ bits only 2

b
-1 numbers can be represented 

  Eg. (1.75)10 = (01.110000)2 

 (-1.75)10 = (11.110000)2 
 

One’s complement form: 

 

 Positive numbers are represented as in sign magnitude form 
 Negative number is represented by complementing all the bits of the positive number 

  Eg. (0.875)10 = (0.111000)2 

 (-0.875)10 = (1. 000111)2 – one‟s complement form 

 The same is obtained by subtracting the magnitude from 2-2
-b

, b is the number of bits 
(without sign bit) 

 In the above example b=6 therefore 2-2
-6

 = 10.000000 – 0.000001 = 1.111111 

  Now for (-0.875)10 1.111111 
-0.111000 
=1.000111 (one‟s complement)  

 Also the magnitude for the negative number is given by  
b 

1− ∑ci 2
−i

 − 2
b
 

i 1  

 For (-0.875)10  = (1.000111)2 
= 1 – (0 x 2

-1
 + 0 x 2

-2
 + 0 x 2

-3
 + 1 x 2

-4
 + 1 x 2

-5
 + 1 x 2

-6
) – 2

-6
  

= 1 – (2
-4

 + 2
-5

 + 2
-6

) – 2
-6

  
= (0.875)10  

 
 
 
                            Two’scomplement form:. 

 

 Positive numbers are represented as in sign magnitude form 
 Negative number is represented in two‟s complement form of the positive number 

  Eg. (0.875)10 = (0.111000)2  

 (-0.875)10 = (1. 000111)2 – one‟s complement form 
  = +0.000001 +1 

= (1. 001000)2 – two‟s complement form  

 The same is obtained by subtracting the magnitude from 2 

  Now for (-0.875)10 10.000000 (2) 

 -0.111000 (+0.875) 
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= 1.001000 (-0.875 in two‟s complement form)   
 The magnitude for the negative number is given by  

b 

1− ∑ci 2
−i

 
i 1  

 For (-0.875)10  = (1. 001000)2 
= 1 – (0 x 2

-1
 + 0 x 2

-2
 + 1 x 2

-3
 + 0 x 2

-4
 + 0 x 2

-5
 + 0 x 2

-6
)  

= 1 – 2
-3

  
= (0.875)10  

 
Addition of two fixed point numbers: 

 

 The two numbers are added bit by b it starting from right, with carry being added to the 
next bit. 

  Eg., (0.5)10 + (0.125)10     

 (0.5)10 = 0.100   

 +(0.125)10 = +0.001   

  = 0.101 = (0.625)10  
 When two number of „b‟ bits are added and the sum cannot be represented by „b‟ bits an 

overflow is said to occur. 

  Eg., (0.5)10 + (0.625)10   

 (0.5)10 = 0.100 

 +(0.625)10 = +0.101 
 =1.125 = 1.001 But which is (-0.125)10 in sign magnitude 
 In general, the addition of fixed point numbers causes an overflow 

 
Subtraction of two fixed point numbers: 

 

 (0.5)10 - (0.25)10 

(0.5)10 =  0.100  

-(0.25)10 = 0.010  = 1.101 (1‟S) + 0.001  = +1.110 (2‟S) 
  = 10.010  

  = 0.010 (neglect carry) = (0.25)10 
 

 (0.25)10 - (0.5)10 

(0.25)10 =  0.010  

-(0.5)10 = 0.100  = 1.011 (1‟S) + 0.001  = +1.100 (2‟S) 
  = 1.110 (No carry, result is negative 
    take 2‟s complement) 

  = 0.001 (1‟s complement) 
  = +0.001 (+1) 

  = 0.010 (-0.25)10 
 

Multiplication in fixed point:  
 Sign and magnitude components are separated 


 The magnitude of the numbers are multiplied then sign of the product is determined and 

applied to result 
 With „b‟ bit multiplicand and „b‟ bit multiplier the product may contain 2b bits 
 If b = bi + bf, where bi represents integer part and bf represents the fraction part then the 

product may contain 2bi + 2bf bits 
 Multiplication of the two fraction results in a fraction and overflow can never occur 
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4.1.2  Floating point representation: 
 

 The number is represented as F = 2
c
⋅M. where M called mantissa is a fraction such that ½ 

≤M≤1 and „c‟ called exponent can be either positive or negative 

  Eg., (4.5)10 = (100.1)2 = 2
011

 x 0.1001 

 (1.5)10 = (1.1)2 = 2
001

 x 0.1100 
 (6.5)10 = (110.1)2 = 2

011
 x 0.1101 

 04.625)10 = (0.1010)2 = 2
000

 x 0.1010  
 For negative numbers the sign of the floating point number is obtained from the first bit of 

mantissa 
 

Multiplication: 
 

 If F1 = 2
c1
⋅M1 and F2 = 2

c2
⋅M2 then F3 = F1 x F2 = (M1 x M2) ⋅2

(c1+c2)
 

 

  Eg., (1.5)10 = 2
001

 x 0.1100 

 (1.25)10 = 2
001

 x 0.1010 

 (1.5)10 x (1.25)10 = 

2
001

 x 0.1100 x 2
001

 x 

0.1010 
= 2

(001+001)
 x (0.1100 x 0.1010)  

= 2
010

 x 0.01111   
 Addition and subtraction of two floating point numbers are more difficult than addition and 

subtraction of two fixed point numbers 


 To carry out addition, first adjust the exponent of the smaller number until it matches with 
the exponent of the larger number 

 The mantissa are then added or subtracted 
 
 
 

  Eg., (3)10 + (0.125)10   

 (3)10 = 2
010

 x 0.110000  

 (0.125)10 = 2
000

 x 0.001000 = 2
010

 x 0.000010 (adjust the exponent 
    of smaller number) 

(3)10 + (0.125)10 = 2
010

 ( 0.110000 + 0.000010) 

  = 2
010

 x 0.110010  
 

Comparison of fixed point and floating point arithmetic: 

 

Fixed point arithmetic Floating point arithmetic 

Fast operation Slow operation 

Relatively economical More expensive because of hardware 

Small dynamic range Increased dynamic range 
Roundoff errors occur only for Roundoff errors can occur with both 

addition addition and multiplication 

Overflow occurs in addition Overflow dost not arise 
  

Used in small computers Used in larger, general purpose 

 computers 

 
4.1.3  Block floating point numbers: 

 

 A compromise between fixed and floating point systems is the block floating point 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 
 

PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT Page 83 
 

arithmetic 
 The set of signals to be handled is divided into blocks 
 Each block have the same value of exponent 


 The arithmetic operations within the block uses fixed point arithmetic and only one 

exponent per block is stored, thus saving memory 
 Suitable for FFT flow graphs and digital audio applications 

 
 
                    4.2 Quantization noise: 

 

 For most of the engineering applications the input signal is continuous in time or analog 
waveform. 

 This signal is to be converted into digital by using ADC 
 
 

 

X(n) 
X(t)      Sampler        Quantizer     Xq(n) 

 
 
 

Process of A/D Conversion 

 

 First the signal x(t) is sampled at regular intervals t=nT where n=0,1,2….. to create a 
sequence x(n). This is done by sampler. 


 Then numeric equivalent of each sample is expressed by a finite number of bits giving the 

sequence xq(n). 
 The difference signal e(n) = xq(n)-x(n) is called quantization error or A/D conversion noise 

 Assume a sinusoidal signal varying between +1 and -1 having dynamic range 2. 


 If ADC is used to convert the sinusoidal signal it employs (b+1) bits including sign bit. 

Then the number of levels available for quantizing x(n) is 2
b+1

. 

 Thus  the interval  between successive levels is  q  
 2 

 2−
b
 where q is known  as  

2 b1  

    
 

     
 

 quantization step size.     
 

 The common methods of quantization are     
 

O Truncation  
O Rounding  

 
4.3 Truncation: 

 
It is a process of discarding all bits less significant than LSB that is retained. 

 

e.g. 0.00110011 = 0.0011 (8 bits to 4 bits) 

 1.01001001 = 1.0100 

 
4.4 Rounding: 

 
Rounding of a number of b bits is accomplished by choosing the rounded result as the b bit 

number closest to the original number unrounded. 
 

e.g. 0.11010 = 0.110 or 0.111 
 0.110111111 = 0.11011111 or 0.11100000 
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 Rounding up or down will have negligible effect on accuracy of computation 
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          4.5 Error due to truncation  and rounding: 

 
If the quantization method is truncation, the number is appropriated by the nearest level that 

does not exceed it. In this case, the error xT-x is negative or zero where xT is truncation value of x. 

 
The error made by truncating a number to b bits following the binary point satisfies the 

inequality 
 

 0 ≥ xT-x > -2
-b

 -------------1 

e.g. (0.12890625)10 = (0.00100001)2 

 Truncate to 4 bits 

xT = (0.0010)2 = 

(0.125)10 
 

Now the error (xT-x) = -0.00390625 which is > -2
-b

 = -2
-4

 = -0.0625 satisfy the inequality 

 
 Equation 1 holds good for sign magnitude, one‟s complement and two‟s complement if 

x>0 

 
By considering two‟s complement representation the magnitude of the negative number is 

b 

x 1− ∑ci 2
−i

   
i1  

If we truncate to N bits then  

xT  1− ∑ci 2−
i
 i1 

The change in magnitude  
b 

xT − x 1− ∑ci 2−
i
 

iN 

≥ 0  

 

 Therefore, due to truncation the change in the magnitude is positive, which implied that 

error is negative and satisfy the in equality 0 ≥ xT-x > -2
-b

 

 
For one‟s complement representation the magnitude of the negative number with b bits is given 
by 

b 

x  1− ∑ci 2
−i

 − 2−
b
  

i1  
When the number is truncated to N bits, then  

xT  1− ∑ci 2−
i
 − 2−

N
 i1 

The change in magnitude due to truncation is  
N 

xT − x  1− ∑ci 2−
i
 − (2−

N
 − 2−

b
 ) 

i1  
 0 

 

Therefore,the. magnitude decreases with truncation which implies the error is positive 
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and satisfy the in equality 0 ≤ xT-x < 2
-b

 
 The above equation holds for sign magnitude representation also 

In floating point systems the effect of truncation is visible only in the mantissa 
 

If x = 2
c
M then xT = 2

c
MT 

 

Error e = xT-x = 2
c
(MT - M) 

 

 With two‟s complement representation of mantissa we have 
 

 0 ≥ M T − X  −2−
b
   

 

      
 

 0 ≥ e  −2−
b
2

c
 ------------- 2   

 

 Let‟s define relative error ε  
xT − x 

 e 
 

x x 
 

     
 

  The equation 2 becomes   
 

 0 ≥ εx  −2−
b
2

c
   

 

Or 0 ≥ ε 2
c
 M  −2−

b
2

c
   

 

Or 0 ≥ εM  −2−
b
   

 

 If M = 1/2 the relative error is maximum. Therefore, 0 ≥ ε  −2⋅ 2−
b
 

 If M = -1/2 the relative error range is 0 ≤ ε  2⋅ 2−
b
 

 
In one‟s complement representation, the error for truncation of the values of the mantissa is  

0 ≥ MT − X  −2−
b
 

0 ≥ e  −2−
b
2

c
  

With e=εx=ε2
c
M and M=1/2 we get the maximum range of the relative error for 

positive mantissa is  

0 ≥ ε  −2⋅ 2−
b
 

For negative mantissa, value of error is  

0 ≤ MT − X  2−
b
 

Or 0 ≤ e  2
c
2−

b
 

 

With M=-1/2 the maximum range of the relative error negative mantissa 

is 0 ≥ ε  −2⋅ 2−
b
 , which is same as positive mantissa. 

 
 
The probability density function for p(e) for truncation of fixed point and floating point numbers are 
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Fixed Point 

 
P(e) P(e) 

 

2
b
 

 

2
b
/2 

 

 

-2
-b

 0 e -2
-b

 0 2-b e 

2‟s complement  1‟s complement &  

    Sign magnitude   

  

 

 

 

 

 

 

 

Floating Point     

 P(ε)   P(ε)   

 

2
b
/2 

 

2
b
/4 

 
 

 

-2x2
-b

 0 2x2
-b

 ε -2x2
-b

 0 ε 

2‟s complement   1‟s complement &  

    Sign magnitude  
 

In fixed point arithmetic the error due to rounding a number to „b‟ bits produces an error 
e=xR-x which satisfies the in equality 

 

− 2  −b   2 −b 
 

 

≤ x R − x ≤   

---------- 3  
2 2 

 

   
 

    
  

This is because with rounding, if the value lies half way between two levels, it can be 
approximated either nearest higher level or nearest lower level. The above equation satisfied 
regardless of whether sign magnitude, 1‟s complement or 2‟s complement is used for negative 
numbers. 

 
In floating point arithmetic, only mantissa is affected by quantization 

 

If x = 2
c
M and xR = 2

c
MR then error e = xR-x = 2

c
(MR - M). But for rounding 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



       EC 6502 PRINCIPLES OF  DIGITAL SIGNAL PROCESSING 
  

 PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT                             Page 88 
 

 

− 2−
b
     2−b  

 

 

≤ M R − M ≤      
 

2 2 
   

 

        

        
 

− 2
c
 2−b ≤ x  − x ≤ 2

c
 2−b   

 

 R   
 

2 
   

2 
   

      
 

 

  − b   −b 
  

2   

− 2
c
 2  ≤ εx ≤ 2

c
 

 
 

2 2  

  
 

− 2 c 

2
−b

 ≤ ε 2c M ≤ 2c 

2
−b

 
2 2  

−b −b 

− 
2

  ≤ εM ≤ 
2
 

2 2  
 

The mantissa satisfy ½<M<1. If M=1/2 we get the maximum range of relative error  

− 2−
b
 ≤ ε ≤ 2−

b
 

 
The probability density function for rounding is as follows 

 

 

 

 

 

 

 

P(e) P(ε) 
 

2
b
 

 

2
b
/2 

 
 

 

-2
-b

/2 0 2
-b

/2 e -2
-b

 0 2
-b

 ε  

Fixed point 

Floating 

point 
 

 
 

 

Input quantization error: 

 

 The quantization error arises when a continuous signal is converted into digital value. 



 The quantization error is given by 

e(n) = xq(n) – x(n) 

where xq(n) = sampled quantized 
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value x(n) = sampled 
unquantized value 

 
 Depending upon the way in which x(n) is quantized the distributions of quantization noise 

will differ. If rounding of a number is used to get xq(n) then the error signal satisfies the 
relation 

–q/2 ≤ e(n) ≤ q/2 



 Because the quantized signal may be greater or less than actual signal 

  Eg., 

let x(n) = (0.7)10 = 

(0.10110011…)2 

 After rounding x(n) to 3 bits 

 

xq(n) = (0.110)2 = 

(0.75)10 

 Now the error e(n) = 0.75 – 0.7 = 0.05 which satisfies the inequality 
 
 

  
xq(n)     P(e)  

 

            
 

               

1/q 
  

                
 

     

2q 

           

               
 

     q             
 

                  

    -q/2            
 

                   

     q/2   3q/2  5q/2 x(n) -q/2 0 q/2 e 
 

            Probability density function  
 

             

(roundoff error) 
  

              
 

                  
 

                  
 

 
 

Quantizer characteristics (rounding) 
 
 

 The other type of quantization can be obtained by truncation. In truncation, the signal is 
represented by the highest quantization level that is not greater than the signal 


 In two‟s complement truncation, the error e(n) is always negative and satisfied the 

inequality 

-q ≤ e(n)  0 
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xq(n)    P(ε) 
 

    
 

    

1/q 

 

    
 

    
 

2q 

 
q 

 
-q  

q 2q    3q  x(n) -q 0 ε 
 

Probability density function 
(truncation error) 

 
 
 
 
 
 

Quantizer characteristics (2‟s complement truncation) 
 

 The quantization error mean value is zero for rounding and –q/2 for 2‟s complement 
truncation 

 
 
Digital of processing of analog signals the quantization error is commonly viewed as an additive noise 

signal  
i.e. xq (n)  x(n)  e(n)   

  Quantization noise model  

  x(n)=x(nT)   

 x(t) Sampler Quantizer 

xq(n
) 

  x(n)=x(nT) xq(n) = x(n) + e(n) 

 x(t) Sampler +  

 

e(n) 
 

 Therefore, the A/D converter output is the sum of the input signal x(n) and the error 
signal e(n) 

 

If the rounding is used for quantization then the quantization error e(n)=xq(n) – x(n) is 

bounded by –q/2 ≤e(n)≤q/2. In most cases, assume that A/D conversion error e(n) has the 

following properties  
 The error sequence e(n) is a sample sequence of a stationary random process 
 The error sequence is uncorrelated with x(n) and other signals in the system 


 The error is a white noise process with uniform amplitude probability distribution over 

the range of quantization error 
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In case of rounding the e(n) lies between –q/2 and q/2 with equal probability. The variance 
of e(n) is given by 

 

σ e
2
  E[e

2
 (n)]− E

2
[e(n)]  

Where E[e
2
 (n)] is the average of 

e
2
(n)  

 
              E[e(n)] is mean value of e(n)  

   ∞                 
 

σ e
2
 = ∫e

2
 (n) p(e)de−(0)

2  
 

  −∞              
 

    q                  
 

  2            

1 
     

 

σ 
2
   ∫ e

2
 (n)⋅ de  

 

     

e             

q 
  

                   

   
− q            

 

  

 

                 

                     
 

  2                 
 

         q           
 

   

1 
 2            

 

σ e
2
   ∫e

2
 (n)⋅ de 

 
 

q  
 

        −  q          
 

         

2            

                     
 

        

e
3
 (n) 

q  
 

σ e
2
  

1  2    
 

      

      

       

﴿ 
  

 

q 
﴾    

3 
  

 

         − q   
 

                  
 

                 2   
 

  1  q
3
  q

3
  

 

σ e
2        

 ﴾        

﴿  
 

             
 

   q 24  24  
 

. 
3
   

q 2 
 

σ 2  2q   
 

e     

  

24q 12 
 

   
 

Sub q  2−
b
   

2−b 
2
 
 

 

σ 2  
 

 

e 
12 

    
 

       

       
 

σ 2  2−2b     
 

e       

  

12 
    

 

       
 

 
In case of two‟s complement truncation the e(n) lies between 0 and –q having mean value 

of –q/2. The variance or power of the error signal e(n) is given by  
   0                         

q 
  

 

σ 
2
  

  

∫ 
e

2
 (n) 

p(e)de−(− )
2
 

 
 

      

 e                        

2 
   

                              

     −q                       
 

                                 

 2  0    2       1          q  2  
 

σe  ∫e   

(n)⋅    

 
de − −    

  

  

         
 

    −q          q        2    
 

     1   3 (n)  0   q 2         
 

σe
2
    

e 
 

  

−          
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     q     3   −q

4
        

 

 2  1  q
3
    q

2
              

 

σ 
e  

 

   

 

   

−                  

                       

            

4 
             

 

   
q  3

                 
 

σ 2  
  4q

2
 − 3q

2
  
 
 q2           

 

e         

12 
     

12 
          

 

                           

                           
 

subq  2−
b
     

2−b 
2
 
                  

 

σ 2  
                    

 

e      

12 
                       

 

                               

                               
 

σ 2  2−2b                       
 

e                        

  

12 
                         

                           
 

  In both cases the value ofσ 2  2
−2b 

, which is also known as the steady state noise power  

e   

                             

12 
 

 

                                
 

due to input quantization. 

 

 If the input signal is x(n) and its variance is σ x
2
 then the ratio of signal power to noise 

power which is known as signal to noise ratio for rounding is 
 

σ 
2
 
 

σ 
2
 

 12(2
2b
σ 

2
 )  x x  

σ 
2 2−

2b
 /12 

 

 x 
 

e    
 

 
 
When expressed  in a log scale SNR in dB 

= 10log10 
σ

 
x2

  

σe
2
  

 

= 10log10 12(2
2b
σ x

2
 )   

= 10log10 12 10log10 2
2b

 10log10 σ x
2
 )   

= 10.73 10 x2b xlog10 2 10log10 σ x
2
 )   

= 10.79  6.02b 10log10 σ x
2
  

 
 From the above equation it is known that the SNR increases approximately 6dB for each bit 

added to the register length 
 If the input signal is Ax(n) instead of x(n) where 0  A  1, then the variance is A

2
σ x

2
 . 

Hence  

SNR = 10log10 
A

2
σ x

2
        

 

σ 
2         

 

    e        
 

 

= 10.8  6b  

10log σ 
2
  20log  A    

 

  10 x 10      
 

If A  
1  

then 
       

 

4
σ 

        
 

 x        
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SNR 
= 10.8  6b  

10log σ 
2
  20log  A    

 

  10 x 10      
 

 = 10.8  6b 10log σ 2 10log  A2    
 

  10 x 10      
 

 = 10.8  6b 10log σ 
2
 10log 1    

 

       

  10 x 10 16σ 2  
 

         x    
 

 
= 10.8  6b  
10log σ 

2  10log 2−
4
σ −2  

 

  10 x 10  x  
 

 = 10.8  6b 10log σ 
2 10log 2−

4
 10log σ −2 

 

  10 x 10   10 x 
 

= 6b−1.24dB  
  Thus to obtain SNR ≥ 80dB required b = 14 bits. 

 
 
 
                     4.8 LIMIT CYCLE OSCILLATIONS 
 

4.8.1 Zero input limit cycle oscillations: 

 
When a stable IIR filter is excited by a finite input sequence, that is constant, the output will 

ideally decay to zero. However, the non-linearities due to the finite-precision arithmetic operations 
often cause periodic oscillations in the recursive systems are called zero input limit cycle 
oscillations. 

 
Consider a first order IIR filter with difference 

equation y(n)  x(n)  αy(n −1) 

 

Let‟s assume α = ½ and the data register length is 3 bits plus a sign bit. If the input is 
 0.875 for n  0,    
 x(n)  and rounding is applied after the arithmetic operation. Here Q[⋅] 

 
0
 otherwise.    

represents the rounding operations.    

n x(n) y(n-1) α y(n-1) Q[α y(n-1)] y(n)  x(n)  Q[αy(n −1)] 

0 0.875 0 0 0.000 7/8 

1 0 7/8 7/16 0.100 1/2 

2 0 1/2 1/4 0.010 1/4 

3 0 1/4 1/8 0.001 1/8 

4 0 1/8 1/16 0.001 1/8 

5 0 1/8 1/16 0.001 1/8 
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7/8 
 
 

 
1/2 

 
1/4 

 
1/8 1/8   1/8 

 
 

 

From the above table it is found that for n ≥ 3 the output remains constant and gives 1/8 as 
steady output causing limit cycle behavior. 

 
Round a value in the above table: 

 

7/16 = 0.4375    

0.4375 x 2 = 0.875  

0.875 x 2 = 1.75  

                    0..75                 x.                   
2 = 1.5 

0.5 x 2 = 1.1 

 (0.4375)10 = (0.0111)2 
After rounding to 3 bits   

= (0.100)2  

= (0.5)10  

 

Let‟s assume α = -1/2     

n x(n) y(n-1) α y(n-1) Q[α y(n-1)] y(n)  x(n)  Q[αy(n −1)] 

0 0.875 0 0 0.000 7/8 

1 0 7/8 -7/16 1.100 -1/2 

2 0 -1/2 1/4 0.010 1/4 

3 0 1/4 -1/8 1.001 -1/8 

4 0 -1/8 1/16 0.001 1/8 

5 0 1/8 -1/16 1.001 -1/8 

6 0 -1/8 1/16 0.001 1/8 

 

When α = -1/2 the output oscillates between 0.125 to -0.125 
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Dead band:  

 The limit cycle occur as a result of quantization effects in the multiplications 


 The amplitudes of the output during a limit cycle are confined to a range of values that is 
called the dead band of the filter 

 
Let‟s consider a single pole IIR system whose difference equation is given by 

 

y(n)  αy(n −1)  x(n) n  0 

 
After rounding the product term  

yq (n)  Q[αy(n −1)]  x(n) 

 
During the limit cycle oscillations 

Q[αy(n −1)]   y(n −1)   forα  0  
 − y(n −1)   forα  0  

By definition of roundin 

| Q[αy(n −1)]− αy(n −1) |≤ 
2
−b

 2 

                             | y(n −1) − αy(n −1) |≤ 
2
−b

 2 

                                                     | y(n −1)[1− α]|≤ 
2
−b

 2 

                                      2−
b
 / 2 y(n −1) ≤ 1− |α |  

The above equation defines the dead band for the given first order filter. 
 
 

             4.8.2 Overflow limit cycle oscillations: 

 

 In addition to limit cycle oscillations caused by rounding the result of multiplications, there 
are several types of oscillations caused by addition, which makes the filter output oscillates 
between maximum and minimum amplitudes such limit cycles have referred to as overflow 
oscillations. 


 An overflow in addition of two or more binary numbers occurs when the sum exceeds the 

word size available in the digital implementation of the system. 
 Let‟s consider two positive number n1 and n2 

n1 = (7/8)10 = (0.111)2  

n2 = (6/8)10 = (0.110)2  

n1 + n2 =   (1.101)2 (-5/8 in sign magnitude, 

     

but actual total is 
13/8) 

 
 In the above example, when two positive numbers are added the sum is wrongly interrupted 

as a negative number 
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f(n) 

 
1 

 

 
n 

 

 
-1 

 
 
 

Transfer characteristics of an adder 
 

 The overflow occurs if the total input is out of range, this problem can be eliminated by 
modifying adder characteristics 

 
f(n) 

 
1 

 

 
n 

 

 
-1 

 
 
 

Saturation adder transfer characteristics  
 When an overflow is detected, the sum of adder is set equal to the maximum value 

 
 
 
 
 

 

               4.9 SIGNAL SCALING 

 
 The saturation arithmetic eliminates limit cycles due to overflow, but it causes undesirable 

signal distortion due to the non linearity of the clipper. 


 In order to limit the amount of non-linear distortion, it is important to scale the input signal 
and the unit sample response between the input and any internal summing node in the 
system such that overflow becomes a rare event. 

 Let‟s consider a second order IIR filter. A scale factor S0 is introduced between the input 
x(n) and the adder 1, to prevent overflow at the output of adder 1. 


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






   H‟(z)      

 

x(n) +   w(n) 
b

0 + 
                   
y(n) 

 

        

 S0      
 

    Z-1     
 

   -a1  b1   
 

         
 

    Z-1     
 

   -a2  
b

2    
 

   Realization of second order IIR filter   
 

 

 Now the overall input output transfer function is 

H(z)   S 
 b  b z−

1
  b z−

2
     

 

 0 1    2     
 

0
 1 a z−

1  a 
2 z−2     

 

      
 

    1         
 

 S 
 N(z)           

 

0 
D(z) 

         
 

            

            
 

W(z)      S0    S0 
 

H'(z)  
 

 
    

 
  

X (z) 1 a z −1  a 
2 z

−2 D(z) 
 

        1       
  

 If the instantaneous energy in the output sequence w(n) is less than the finite energy in the 
input sequence then, there will not be any overflow 

 

 W (z)  S0 X (z)  S  S(z)D(z) whereS(z)  1   

 0   

       

D(z) 
   

D(z)  

           
 

We have            
 

w(n)  
S

0 ∫S(e 
jθ )X (e 

jθ )(e 
jnθ )dθ    

 

      

 2π            
 

Which gives            
 

  S
0 

2       

2 

   
 

w
2
 (n)  

 

 ∫S(e 
jθ )X (e 

jθ )(e 
jnθ )dθ 

   
 

4π 2    
 

             
 

Using Schwartz in equality  
  

2 
     

≤ S 
 2  1 

∫2π 

      
jθ 

 
2 
   

 1  
  

∫2π 

  
jθ  

 
2   

                      
 

 

w 
 

(n) 0 
      

 

S(e 
  

) 
  

dθ 
         

 

X (e 
 

) 
 

dθ 
 

                   
 

               2π                  2π          
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Applying Parsavel‟s theorem                              
 

               ∞    
1 

                     
 

     
 

  2      

≤ S 

2 

∑ 
x
 

2     

∫2π 

    jθ     2      
 

 
w 

 

(n) 0 

  

(n) 

     

  
S(e 

    

) dθ 
------------------ 
1 

 

            
 

               n0    2π                          
 

We know 
 

 z  e 
jθ                                                 

 

Differentiate with respect to θ                              
 

 dz  
  je 

jθ 
                                              

 

 dθ                                                
 

  
 

dz  je 
jθ dθ                                            

 

dθ  
  dz  

 
dz  − − − − − − − − − − − −2 

     
 

  

je jθ 
  

jz 
     

 

                                                   

                                                    
 

Substitute equation 2 in equation 1                 
 

     
 

                   ∞        1             2            
 

 

w
2
 (n) ≤ S0

2
 ∑ x

2
 (n) 

 

∫ 
 

S(z) 

 

 

  

z−
1
dz 

      

     

  

       
 

 2πj        
 

          
 

                 n0        
1 

 c                  
 

    
 

                   ∞                                 
 

        

 ≤ S0
2
 ∑ x

2
 (n) 

  

∫ S(z)S(z−
1
)z−

1
dz 

    
 

         2πj     
 

                 n0           c   
 1 

                
 

 

∞  
 

 w
2
 (n)  ≤ ∑ x

2
 (n) when S0 2 

       

∫
c 

 S(z)S(z−
1
)z−

1
dz  1  

 

2πj 

   
 

            n0                              
 

Therefore, S   2                   1                           
 

0                                               

            

1 
 

∫ S(z)S(z−
1
)z−

1
dz 

          
 

                          
 

                   2πj           
 

                   c                                    

   

        
 

            1                                  
 

 

 

   

        

1 
  

∫ 

   

z−
1
dz 

                          
 

                                           
 

            2πj D(z)D(z−
1
)                         

 

 
 

          1                                             
 

                                                      

                            I 
 

   1 

∫ 

    z−
1
dz                                   

 

Where I  
  

 

                             
 

2πj D(z)D(z−
1
)                              

 

c 
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UNIT 5 
DSP APPLICATIONS 

 

5.1  MULTIRATE SIGNAL PROCESSING 
 

There is a requirement to process the various signals at different sampling rate e.g., 

Teletype, Facsimile, speech and video, etc., The discrete time systems that process data at more 
than one sampling rate are known as multirate systems. 

 

Example:  
 High quality data acquisition and storage 
 Audio and video signal processing 
 Speech processing 
 Narrow band filtering for ECG/EEG 
 Transmultiplexers 

 
 

Sampling rate conversion can be done in i) analog domain and ii) digital domain. In 

analog domain using DAC the signal is converted into analog and then filtering is applied. Then 

the analog signal is converted back to digital using ADC. In digital domain all processing is done 

with signal in digital form. 
 
 

In the first method, the new sampling rate doesn‟t have any relationship with old sampling 

rate. But major disadvantage is the signal distortion. So the digital domain sampling rate 

conversion is preferred even then the new sampling rate depends on the old sampling rate. 
 
 

The two basic operations in multirate signal processing are decimation and interpolation. 
Decimation reduces that sampling rate, whereas interpolation increases the sampling rate. 

 

Down sampling: 
 
 

The sampling rate of a discrete time signal x(n) an be reduced by a factor M by taking 
every Mth value of the signal. 

x(n)  ↓M  y(n) = x(Mn) 
 

A downsampler 
 

The output signal y(n) is a downsampled signal of the input signal x(n) and can 
be represented by  
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y(n) = x(Mn)  
Example: 

 
x(n) = {1, -1, 2, 4, 0, 3, 2, 1, 5, 

….} if M = 2  
y(n) = {1, 2, 0, 2, 5, ….} 

 
 

Up sampling: 
 
 

The sampling rate of a discrete time signal can be increased by a factor L by placing L-
1 equally spaced zeros between e ach pair of samples. Mathematically, upsamplin g is 
represented by  

 n    
 

x  n  0,  L, 2L......  

  

y(n)   L    
 

     

otherwise 

 

0
     

 

           
 

           
 

           
 

           
 

           
 

           
 

 
Example:  

x(n) = {1, 2, 4, -2, 3, 2, 1, …..}  
if L = 2  

y(n) = x(n/2) = {1, 0, 2, 0, 4, 0, -2, 0, 3, 0, 2, 0, 1, …..} 
 
 

In practice, the zero valued samples inserted by upsampler are replaced with 
appropriate non-zero values using some typee f filtering process. This process is called 
interppolation. 

 

5.2 Polyphase structure of Decimator: 

 

The transfer function H(z) of the polyphase FIR filter is decomposed into M branches given  
by  

M −1  

H(z)  ∑z−
m

 pm (z
M

 )  
m0  

N 1  
m  

Where pm (z)  ∑h(Mn  m)z−
n
  

n0  

The Z transform of an infiniite sequence is given by  

∞  

H(z)  ∑h(n)z−
n
  

n  
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In this case H(z) an be decomposed into M-branches as  
M −1  

H(z)  ∑ z−
m

 pm (z
M

 )  
m0  

∞  

Where pm (z)  ∑h(rM  m)z−
r
  

r  

M −1 ∞  

H(z)  ∑ ∑ z−
m

 h(rM  m)z−
rM

  
m  0 r  

 
M −1 ∞ 

H(z)  ∑ ∑h(rM  m)z−
(rM

 
m)

 
m  0 r  

let h(Mn  m)  pm (r)  
M −1 ∞ 

H(z)  ∑ ∑ pm (r)z−
(rM

 
m)

 
m  0 r  

M −1 ∞ 

Y(z)  ∑ ∑ pm (r)X (z)z−
(rM

 
m)

 
m  0 r  
M −1 ∞ 

y(n)  ∑ ∑ pm (r)x[n − (rM  m)] 
m  0 r  

let xm (r) x(rM  m)  
M −1 ∞ 

y(n)  ∑ ∑ pm (r)xm (n − r) 
m  0 r  
M −1 

y(n)  ∑ pm (n)* xm (n) 
m0  
M −1 

y(n)  ∑ ym (n) 
m0  

Where ym (n)  pm (n)* xm (n) 
 
 

The operation pm (n)* xm (n) is known as polyphase convolution, and the overall process is 

polyphase filtering. xm(n) is obtained first delaying x(n) by M units then downsampling by a factor M. Next 

ym(n) can be obtained by convolving xm(n) with pm(n). 
 
 

 
 

x(n) x0(n) 

+ 

y(n

) 
 

↓M P0(n)  
 

Z-1    
 

↓M 

x1(n) 

+ 
 

 

P1(n)  
 

www.Vidyarthiplus.com

www.Vidyarthiplus.com



       EC 6502 PRINCIPLES OF  DIGITAL SIGNAL PROCESSING 
  

 PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT                             Page 102 
 

 

 

Z-1 
 

x2(n) 
↓M P2(n) 

 

Polyphase structure of a 3 branch decimator 
 

x(n) x0(n) 

+ 

y(n

) 
 

 ↓M P0(n)  
 

Z-1    
 

 

↓M 

x1(n) 

+ 
 

 

 P1(n)  
 

Z-1    
 

 

↓M 

x2(n) 

+ 

 
 

  
 

 P2(n)  
 

     
 

 
 
 
 

xM-1(n) 
↓M   PM-1(n) 

 

Polyphasestructure of a M branch decimator 
 
 

The splitting of x(n) into the low rate sub sequence x0(n),x1(n)……..xM-1(n) is often 

represented by a commutator. The input values x(n) enter the delay chain at high rate. Then the M 
downsampler sends the group of M input values to M filters at time n=mM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  x0(n) 
 

  P0(n) 
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 m = 0 
x1(n)  

  
 

  P1(n) 
 

Rate Fx m = 1 
 

x(n)  
 

  

m = 2 
 

  
 

  x2(n) 
 

  P2(n) 
 

  m = M-1 
 

 
 
 

 + 
 
 

 

 + 
 
 
 
 

 + 

 
 
y(n) 

 
Rate Fy = 

Fx/M 

 
 

 

xM-1(n) 

 
 
 

 
PM-1(n) 
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Polyphase decimator with a commutator 

 
To produce the output y(0), the commutator must rotate in counter-clockwise direction 

starting from m = M-1…… m=2, m=1, m=0 and give the input values x(-M+1)…..x(-2), x(-1), 

x(0) to the filters pM-1(n)…….p2(n),p1(n),p0(n). 

 

5.3  Polyphase structure of Interpolator: 
 
 

By transposing the decimator structure, we can obtain the polyphase structure for 
interpolator, which consists of a set of L sub filters connected in parallel. 

 

x(n) y0(n) 

↑L + 

y(n

) 
 

 

P0(n) 
  

  
 

   Z-1  
 

 y1(n) 

↑L + 
 

 

 P1(n)  
 

   Z-1  
 

 y2(n)    
 

 P2(n) ↑L +  
 

    
 

   

Z-1 

 
 

    
 

 

PM-1(n)  

yM-1(n)
   ↑L 

 

Polyphasestructure of a M branch Interpolator 
 

Here the polyphase components of impulse response are give by 

Pm(n) = h(nL+m) m = 0, 1, 2 …… L – 1 
 
 

Where h(n) is the impulse response of anti-imaging filter. The output of L sub filters can 
be represented as  

ym (n)  x(n)pm (n)  m  0,1,2........L −1 

 

By upsampling with a factor L and adding a delay z
-m

 the polyphase components are 

produced from ym(n). These polyphase components are all added together to produce the output 
signal y(n) 
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The output y(n) also can be obtained by combining the signals xm(n) using a commutator as 
shown below  

x(n) 
P0(n) 

y0(n)     
 

    

m = 0 

 

 

y1(n) 

  
 

    
 

 
P1(n) 

    
 

       

  

m = 1 
 

   
 

      y(n) 
 

 

P2(n) 
y2(n) 

m = 2 
 

 

  
 

     
 

  

m = M-1 

 

   
 

   
 

 
 
 

 

PL-

1(n) 

 
 

 

yL-

1(n)
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                                              Polyphase interpolator with a commutator 
 
 

5.4  Multistage implementation of sampling rate conversion: 
 
 

If the decimation factor M and/or interpolation factor L are much larger than unity, the 

implementation of sampling rate conversion in a single stage is computationally inefficient. 

Therefore for performing sampling rate conversion for either M>>1 and/or L>>1 the multistage 

implementation is preferred. 

 

If the interpolation factor L>>1, then express L into a product of positive integers as 

 
N 

„   ∏Li   
i1   

Then each interpolator Li is implemented and cascaded to get N stages of interpolation and 
filtering. 

 

x(n) 
 

 

 

↑L1 

 

L1F

x 

↑L 

 L1L2Fx 

↑L 

y(n) 
 

 
 

 
h1(n) 

 

h2(n) 

 

 hN(n) 

 

   
 

Fx         

Fy=LF
x 

 

 
 

Similarly if the decimation factor M>>1 then express M into a product of positive 

integers as  
N 

M  ∏Mi  
i1  

 
 

 

Each decimator Mi is implemented and cascaded to get N stages of filtering and 

decimators.  

x(n) 
 Fx/M1  

Fx/M1M2 
 

y(n)  

    
 

h1(n) ↓M1 h2(n) ↓M2 
  

hN(n) ↓MN  

  
 

Fx       

Fy=Fx/
M 

 

 
 

Implementation of narrowband LPF: 
 
 

A narrowband LPF is characterized by a narrow passband and a narrow transition band. It 

requires a very large number of coefficients. Due to high value of N it is susceptible to finite word 

length effects. In addition the number of computations and memory locations required are very 
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high. So multirate approach of designing LPF overcomes this problem. 
 
 

x(n)   F/M   
y(n)  LPF    

LPF  

 

↓M 
 

↑M 
 

    

F h1(n) 
 

h2(n) F 
 

   
 

     
 

 
 

In the above diagram, the interpolator and decimator are in cascade. The filters h1(n) and 

h2(n) in the decimator and interpolator are lowpass filters. The sampling frequency of the input 

sequence is first reduced by a factor M then lowpass filtering is performed. Finally the original 
sampling frequency of the filtered data is obtained using interpolator. 

 

To meet the desired specifications of a narrow band LPF, the filters h1(n) and h2(n) are 

identical, with passband ripple δp/2 and stopband ripple δs. 

 

5.5  Filter bank:  
 Analysis filter bank 
 Synthesis filter bank 

 

Analysis filter bank: 
 

X(z) 
H0(z) 

 

 

H1(z) 
 

 

H2(z) 
 
 
 
 

 

 HM-1(z) 
 

. 
. 

 
 
 
 
 
 
 
 
 
 
 

↓M   U0(z) 
 
 

↓M   U1(z) 
 
 

↓M   U2(z) 
 
 
 
 
 

↓M   UM-1(z) 
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 It consists of M sub-filters. The individual sub-filter Hk(z) is known as analysis bank. 
 All the sub-filters are equally spaced in frequency and each have the same band width. 

 The spectrum of the input signal X(e
jω) lies in the range 0 ≤ ω ≤ π. 

 The filter bank splits the signal into number of subbands each having a band width of 

π/M. 
 The filter H0(z) is lowpass, H1(z) to HM-2(z) are bandpass and HM-1(z) is highpass. 


 As the spectrum of signal is band limited to π/M, the sampling rate can be reduced 

by a factor M. The downsampling moves all the subband signals into the baseband 

range 0 ≤ 

ω ≤ π/2. 

 
Analysis filter bank: 

 
 

 
 

U (z) ↑M 
G0(z

) 
0   

U (z) ↑ M 
G1(z

) 
1   

U (z) ↑ M 
G2(z

) 
2   

 + 

 

 + 

 

 + 

 
 

 
∧  

 X (z) 
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U (z) ↑ M 

GM-

1(z) 
M-1    

 
 

The M channel synthesis filter bank is dual of M channel analysis filter bank. In this 
case Um(z) is fed to an upsampler. The upsampling process produces the signal Um(z

M
). 

These signals are  
∧  

applied to filters Gm(z) and finally added to get the output signal X (z). The filters 

G0(z) to GM-1(z) have the same characteristics as the analysis filters H0(z) to HM-1(z). 

 

 

Subband coding filter bank: 
 
 

If we combine the analysis filter band and synthesis filter band we obtain an M-channel 
subband coding filter bank. 

 
 

 
 
 
X(z) 

H0(z) ↓M ↑M 
G0(z

) 

H1(z) ↓M ↑ M 
G1(z

) 

H2(z) ↓M ↑ M 
G2(z

) 
 
 
 

 

 HM-1(z)   ↓M    ↑ 
M   G

M-1

(z)
 

 
 
 

 + 
 
 

 + 
 
 

 + 

 
 
 

∧ 
 X (z) 

 
 

The analysis filter band splits the broadband input signal x(n) into M non-overlapping 

frequency band signals X0(z), X1(z)……XM-1(z) of equal bandwidth. These outputs are coded and 
 
transmitted. The synthesis filter bank is used to reconstruct output signal 
approximate the original signal. It has application in speech signal processing. 
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Quadrature Mirror Filter (QMF) Bank: 

 

 
    ∧ 

 

V (z) U (z)  V0 (z) 
 

0 
↓2 

0 
↑2 G0(z) 

 

H0(z)  
 

X(z)     
 

    ∧ 
 

V (z) U (z)  V1(z) 
 

1 
↓2 

1 
↑ 2 G1(z) 

 

H1(z)  
 

 
∧ 
 
X (z)which 
should 
 
 
 
 
 
 
 
 
 
 

Y(z) 

+  
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It is a two-channel subband coding filter bank with complementary frequency responses. It 

consists of two sections 

 
1. Analysis section   
2. Synthesis section  

 
 
 

Analysis Section: 

 

 The analysis section is a two channel analysis filter bank 
 The signal x(n) is fed to a LPF H0(z) and a HPF H1(z) simultaneously. Hence the input 

signal x(n) is decomposed into high frequency component and low frequency component 


 Since the normalized frequency range is ω = 0 and ω = π, the cut off frequency of HPF and 

LPF are chosen as π/2. 
 
 

 |H (e
jω)| |H (e

jω)|  
 

1.0 0 1  
 

   
 

0 π/2 π ω 
 

  
  

The output of low pass and high pass filters are 
V

0 

(z)
 


 

X
 

(Z)H
0 

(z)
  

and
  ……………1 

V1(z)  X (Z)H1(z)  
Down sampling with M = 2, yields the subband signals 

 
    

1 
1 1  

 

  

(z)  
       

 

U  [V (z 2 ) V (−z 2 ) and  

    

 0 2 0    0    …………….2        
1  1   

   

1 
    

 

  

(z)  
    

 

U   [V (z 2 ) V (−z 2 )  

   

 1 2  1    1     
  

Substitute equation 1 in equation 2 
 

    

1 
1    1 1    1  

 

  

(z)  
       

(z 
      

)H 
  

(−z 
  

) and 
 

U 
0 [X (z 

2
 )H 0 2 )  X (−z 2 0 2  

2 
 

                       

                           
 

    
1 

1     1  1     1   
 

U1(z)  
     

(z 
 

)  X (−z 
 

)H 
 

(−z 
 

) 
 

 [X (z 
2
 )H  

2 2  
2  

     

    2 1      1       
 

                           
  

In matrix form 
 

U  (z)      1    1  1     
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0 

 

1 H 0 (z 
2
 ) H0 (−z

2
 )  X (z 

2
 ) ……………

….3 

 

       1   1   1  
 

U1(z) 
 

 2 
H (z

2
 ) H (−z 

2
 )  X (−z 2

 ) 
  

      
 

       1    1         
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                                                                           H0(z) H1(z) 
  

 
Lowpass Highpass 

 

 
π/2 

 
 
 
 
V0(z) 

 
 ω 
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π 
ω 

 

π/2  
 

   

 
 
 
 
U0(z) 
 
 
 
 

 
 

π 
ω 

 

π/2  
 

   

 

                                                                        V1(z) 
 
 
 
 

                 π/2                           

 

                                                                 1(z) 

 
 
 

                                                                                                                                               
π 

ω 
 

π/2  
 

  
  

Frequency response characteristics of signals  
 

x(n) is a white noise input signal. The frequency spectra of V0(z) have two components one 

is the original spectrum that depends on X(z
1/2

) lies in the baseband and the other is periodic 

repetition that is function of X(z
-1/2

). The high pass signal U1(z) drops into the baseband 0 ≤ ω ≤ 

π and is reversed in frequency. Since the filtered signals are not properly band limited to π, alias 

signals appear in baseband. 

 

Synthesis section: 

 

The signals U0(z) and U1(z) are fed to the synthesis filter bank. Here the signals U0(z) and 

U1(z) are upsampled and then passed through two filters G0(z) and G1(z) respectively. The filter 

G0(z) is a lowpass filter and eliminates the image spectrum of U0(z) in the range π/2 ≤ ω ≤ π. 

Meanwhile the highpass filter G1(z) eliminates most of the image spectra in the range 0 ≤ ω ≤ 

π/2. As the frequency range of the two signals U0(z) and U1(z) overlap, the image spectra is not 

completely eliminated. 
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The reconstructed output of the filter bank is  
 ∧ 

Y(z)  G0 (z)V 0 (z)  G1(z)V1(z) 
 

Y(z)  G0 (z)U0 (z
2
 )  G1 (z)U1 (z

2
 ) ……………….4  

∧ 

Where 

V
0 

(z)
 


 

U
0 

(z2
 

)
 

∧ 
V1(z)  U1(z

2
 ) 

 
Equation 4 can be written in matrix form as 

 

Y(z)  

G0 

      

(z) 

   2           
 

(z) G1 
U

0 

(z
  )          

 

                  2           
 

               U1(z  
)
          

 

From equation 3                        
 

 (z 2 )   1  H (z)  H (−z)  X (z)       
 

U  
 

0      

0         
 0

 
      

 

       

 

 

 

      

 2 

) 2 

               
 

U1(z    H1(z)  H1(−z) X (−z)      
 

Y(z)  

G0 (z) G1 (z) 
1 H0 (z)  H0 (−z)  X (z)     

 

 

 

 

(z) 

  

  

     

2 

       
 

               
H

1  H1(−z)  X (−z)     
 

Y(z)  

1 

[G (z)H 

 

(z)  G (z)H (z)]X (z)  

1 

[G (z)H 

 

(−z)  G (z)H 

(−z)]X  

 

(−z) 

 

      

   2   0   0    1   1   2 0 0 1 1  
 

Y(z)  T(z)X (z)  A(z)X (−z)…………5 
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Where  
1 

T(z)  2 [G0 (z)H0 (z)  G1(z)H1(z)] 

1 

A(z)  2 [G0 (z)H0 (−z)  G1(z)H1(−z)] 
 
 

The function T(z) describes the transfer function of the filter and is called 
distortion transfer function. The function A(z) is due to aliasing components. 

 
Alias free filter bank: 

 

To obtain an alias free filter bank, we can choose the synthesis filter such that 
A(z) = 0. 

 

i.e., A(z)  

1 

[G 

 

(z)H 

 (−z)  G 

(z)H 

 

(−z)]  0 
 

     

2  0  0 1  1  
 

G0 (z)H0 (−z)  G1(z)H1(−z)  0    
 

A simple sufficient condition for alias cancellation is 
 

G0 (z)  H1(−z)    and    
 

G1(z)  −H0 (−z)      
 

Then equation 5 becomes      
 

Y(z)  T(z)X (z)       
 

Substituting z  e 
jω yields      

 

Y(e 
jω )  T(e 

jω )X (e 
jω )    

 

| T(e 
jω ) | e 

jθ 
(ω)

 X (e 
jω )    

 

If |T(e 
jω ) | is constant for all „ω‟, there is no amplitude distortion. This condition is satisfied when 

 

T(e 
jω )is an all pass filter.  In same way, if T(e 

jω ) have linear phase there is no phase distortion.  This 
  

condition is satisfied when θ (ω)  αω  β for constant α and β. Therefore T(e 
jω ) need to 

be a linear phase all pass filter to avoid any magnitude or phase distortion. 

 
If an alias free QMF bank has no amplitude and phase distortion then it is called a 

perfect reconstruction (PR) QMF bank. In such a case 

 

Y(z)  kz−
l
 X (z) and the output y(n) = kx(n-l). 

 
i.e., the reconstructed output of a PRQMF bank is a scaled, delayed replica of the output. 
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5.8 ADAPTIVE FILTER 
 
                        An adaptive filter is a filter that self-adjusts its transfer function according to 
an optimizing algorithm. Because of the complexity of the optimizing algorithms, most 
adaptive filters are  
 
digital filters that perform digital signal processing and adapt their performance based on the 
input signal. By way of contrast, a non-adaptive filter has static filter coefficients (which 
collectively form the transfer function). 
For some applications, adaptive coefficients are required since some parameters of the 
desired processing operation (for instance, the properties of some noise signal) are not known 
in advance. In these situations it is common to employ an adaptive filter, which uses feedback 
to refine the values of the filter coefficients and hence its frequency response. 
Generally speaking, the adapting process involves the use of a cost function, which is a 
criterion for optimum performance of the filter (for example, minimizing the noise 
component of the input), to feed an algorithm, which determines how to modify the filter 
coefficients to minimize the cost on the next iteration. 
As the power of digital signal processors has increased, adaptive filters have become much 
more common and are now routinely used in devices such as mobile phones and other 
communication devices, camcorders and digital cameras, and medical monitoring equipment. 
 
Example 
Suppose a hospital is recording a heart beat (an ECG), which is being corrupted by a 50 Hz 
noise (the frequency coming from the power supply in many countries).One way to remove 
the noise is to filter the signal with a notch filter at 50 Hz. However, due to slight variations 
in the power supply to the hospital, the exact frequency of the power supply might 
(hypothetically) wander between 47 Hz and 53 Hz. A static filter would need to remove all 
the frequencies between 47 and 53 Hz, which could excessively degrade the quality of the 
ECG since the heart beat would also likely have frequency components in the rejected range. 
To circumvent this potential loss of information, an adaptive filter could be used. The 
adaptive filter would take input both from the patient and from the power supply directly and 
would thus be able to track the actual frequency of the noise as it fluctuates. Such an adaptive 
technique generally allows for a filter with a smaller rejection range, which means, in our 
case, that the quality of the output signal is more accurate for medical diagnoses. 
 
Block diagram 
The block diagram, shown in the following figure, serves as a foundation for particular 
adaptive filter realisations, such as Least Mean Squares (LMS) and Recursive Least Squares 
(RLS). The idea behind the block diagram is that a variable filter extracts an estimate of the 
desired signal.       

To start the discussion of the block diagram we take the following assumptions: 
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 The input signal is the sum of a desired signal d(n) and interfering noise v(n) 

x(n) = d(n) + v(n) 

 The variable filter has a Finite Impulse Response (FIR) structure. For such structures 

the impulse response is equal to the filter coefficients. The coefficients for a filter of 

order p are defined as 

. 

 The error signal or cost function is the difference between the desired and the 

estimated signal 

 

The variable filter estimates the desired signal by convolving the input signal with the 

impulse response. In vector notation this is expressed as 

 

where 

 

is an input signal vector. Moreover, the variable filter updates the filter coefficients at every 

time instant 

 

where is a correction factor for the filter coefficients. The adaptive algorithm generates 

this correction factor based on the input and error signals. LMS and RLS define two different 

coefficient update algorithms. 

5.9 Applications of adaptive filters 

 Noise cancellation 

 Signal prediction 

 Adaptive feedback cancellation 

 Echo cancellation 

Active noise control 

Active noise control (ANC) (also known as noise cancellation, active noise reduction 

(ANR) or antinoise) is a method for reducing unwanted sound. 
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Explanation 

Sound is a pressure wave, which consists of a compression phase and a rarefaction phase. A 

noise-cancellation speaker emits a sound wave with the same amplitude but with inverted 

phase (also known as antiphase) to the original sound. The waves combine to form a new 

wave, in a process called interference, and effectively cancel each other out - an effect which 

is called phase cancellation. Depending on the circumstances and the method used, the 

resulting soundwave may be so faint as to be inaudible to human ears. 

A noise-cancellation speaker may be co-located with the sound source to be attenuated. In 

this case it must have the same audio power level as the source of the unwanted sound. 

Alternatively, the transducer emitting the cancellation signal may be located at the location 

where sound attenuation is wanted (e.g. the user's ear). This requires a much lower power 

level for cancellation but is effective only for a single user. Noise cancellation at other 

locations is more difficult as the three dimensional wavefronts of the unwanted sound and the 

cancellation signal could match and create alternating zones of constructive and destructive 

interference. In small enclosed spaces (e.g. the passenger compartment of a car) such global 

cancellation can be achieved via multiple speakers and feedback microphones, and 

measurement of the modal responses of the enclosure. 

Modern active noise control is achieved through the use of a computer, which analyzes the 

waveform of the background aural or nonaural noise, then generates a signal reversed 

waveform to cancel it out by interference. This waveform has identical or directly 

proportional amplitude to the waveform of the original noise, but its signal is inverted. This 

creates the destructive interference that reduces the amplitude of the perceived noise. 

The active methods (this) differs from passive noise control methods (soundproofing) in that 

a powered system is involved, rather than unpowered methods such as insulation, sound-

absorbing ceiling tiles or muffler. 

The advantages of active noise control methods compared to passive ones are that they are 

generally: 

 More effective at low frequencies. 

 Less bulky. 

 Able to block noise selectively. 

The first patent for a noise control system was granted to inventor Paul Lueg in 1934 U.S. 

Patent 2,043,416, describing how to cancel sinusoidal tones in ducts by phase-advancing the 

wave and canceling arbitrary sounds in the region around a loudspeaker by inverting the 

polarity. By the 1950s, systems were created to cancel the noise in helicopter and airplane 

cockpits including those patented by Lawrence J. Fogel in the 1950s and 1960s such as U.S. 

Patent 2,866,848, U.S. Patent 2,920,138, U.S. Patent 2,966,549 and Canadian patent 631,136. 

In 1986, Dick Rutan and Jeana Yeager used prototype headsets built by Bose in their around-

the-world flight.
[1][2]

 

Applications 

  
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Applications can be "1-dimensional" or 3-dimensional, depending on the type of zone to 

protect. Periodic sounds, even complex ones, are easier to cancel than random sounds due to 

the repetition in the wave form. 

Protection of a "1-dimension zone" is easier and requires only one or two microphones and 

speakers to be effective. Several commercial applications have been successful: noise-

cancelling headphones, active mufflers, and the control of noise in air conditioning ducts. The 

term "1-dimension" refers to a simple pistonic relationship between the noise and the active 

speaker (mechanical noise reduction) or between the active speaker and the listener 

(headphones). 

Protection of a 3-dimension zone requires many microphones and speakers, making it less 

cost-effective. Each of the speakers tends to interfere with nearby speakers, reducing the 

system's overall performance. Noise reduction is more easily achieved with a single listener 

remaining stationary in a three-dimensional space but if there are multiple listeners or if the 

single listener moves throughout the space then the noise reduction challenge is made much 

more difficult. High frequency waves are difficult to reduce in three dimensions due to their 

relatively short audio wavelength in air. Sinusoidal noise at approximately 1000 Hz is double 

the distance of the average person's left ear to the right ear; such a noise coming directly from 

the front will be easily reduced by an active system but coming from the side will tend to 

cancel at one ear while being reinforced at the other, making the noise louder, not softer. 

High frequency sounds above 1000 Hz tend to cancel and reinforce unpredictably from many 

directions. In sum, the most effective noise reduction in three dimensions involves low 

frequency sounds. Commercial applications of 3-D noise reduction include the protection of 

aircraft cabins and car interiors, but in these situations, protection is mainly limited to the 

cancellation of repetitive (or periodic) noise such as engine-, propeller- or rotor-induced 

noise. 

Antinoise is used to reduce noise at the working environment with ear plugs. Bigger noise 

cancellation systems are used for ship engines or tunnels. An engine's cyclic nature makes 

FFT analysis and the noise canceling easier to apply. 

The application of active noise reduction produced by engines has various benefits: 

 The operation of the engines is more convenient for personnel. 

 Noise reduction eliminates vibrations that cause material wearout and increased fuel 

consumption. 

 Quieting of submarines. 

Linear prediction 

Linear prediction is a mathematical operation where future values of a discrete-time signal 

are estimated as a linear function of previous samples. 

In digital signal processing, linear prediction is often called linear predictive coding (LPC) 

and can thus be viewed as a subset of filter theory. In system analysis (a subfield of 

mathematics), linear prediction can be viewed as a part of mathematical modelling or 

optimization. 
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The prediction model 

The most common representation is 

 

where is the predicted signal value, x(n − i) the previous observed values, and ai the 

predictor coefficients. The error generated by this estimate is 

 

where x(n) is the true signal value. 

These equations are valid for all types of (one-dimensional) linear prediction. The differences 

are found in the way the parameters ai are chosen. 

For multi-dimensional signals the error metric is often defined as 

 

where is a suitable chosen vector norm. 

Estimating the parameters 

The most common choice in optimization of parameters ai is the root mean square criterion 

which is also called the autocorrelation criterion. In this method we minimize the expected 

value of the squared error E[e
2
(n)], which yields the equation 

 

for 1 ≤ j ≤ p, where R is the autocorrelation of signal xn, defined as 

, 

and E is the expected value. In the multi-dimensional case this corresponds to minimizing the 

L2 norm. 

The above equations are called the normal equations or Yule-Walker equations. In matrix 

form the equations can be equivalently written as 

 

  
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where the autocorrelation matrix R is a symmetric, Toeplitz matrix with elements ri,j = R(i − 

j), vector r is the autocorrelation vector rj = R(j), and vector a is the parameter vector. 

Another, more general, approach is to minimize 

 

where we usually constrain the parameters ai with a0 = − 1 to avoid the trivial solution. 

This constraint yields the same predictor as above but the normal equations are then 

 

where the index i ranges from 0 to p, and R is a (p + 1) × (p + 1) matrix. 

Optimization of the parameters is a wide topic and a large number of other approaches have 

been proposed. 

Still, the autocorrelation method is the most common and it is used, for example, for speech 

coding in the GSM standard. 

Solution of the matrix equation Ra = r is computationally a relatively expensive process. The 

Gauss algorithm for matrix inversion is probably the oldest solution but this approach does 

not efficiently use the symmetry of R and r. A faster algorithm is the Levinson recursion 

proposed by Norman Levinson in 1947, which recursively calculates the solution. Later, 

Delsarte et al. proposed an improvement to this algorithm called the split Levinson recursion 

which requires about half the number of multiplications and divisions. It uses a special 

symmetrical property of parameter vectors on subsequent recursion levels. 

Echo cancellation 

The term echo cancellation is used in telephony to describe the process of removing 

echo from a voice communication in order to improve voice quality on a telephone 

call. In addition to improving subjective quality, this process increases the capacity 

achieved through silence suppression by preventing echo from traveling across a 

network. 

Two sources of echo have primary relevance in telephony: acoustic echo and hybrid 

echo. 

Echo cancellation involves first recognizing the originally transmitted signal that re-

appears, with some delay, in the transmitted or received signal. Once the echo is 
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recognized, it can be removed by 'subtracting' it from the transmitted or received 

signal. This technique is generally implemented using a digital signal processor 

(DSP), but can also be implemented in software. Echo cancellation is done using 

either echo suppressors or echo cancellers, or in some cases both. 

Acoustic echo 

Acoustic echo arises when sound from a loudspeaker—for example, the earpiece 

of a telephone handset—is picked up by the microphone in the same room—for 

example, the mic in the very same handset. The problem exists in any 

communications scenario where there is a speaker and a microphone. Examples of 

acoustic echo are found in everyday surroundings such as: 

 Hands-free car phone systems 

 A standard telephone or cellphone in speakerphone or hands-free mode 

 Dedicated standalone "conference phones" 

 Installed room systems which use ceiling speakers and microphones on the table 

 Physical coupling (vibrations of the loudspeaker transfer to the microphone via the 

handset casing) 

In most of these cases, direct sound from the loudspeaker (not the person at the far 

end, otherwise referred to as the Talker) enters the microphone almost unaltered. 

This is called direct acoustic path echo. The difficulties in cancelling acoustic echo 

stem from the alteration of the original sound by the ambient space. This colours the 

sound that re-enters the microphone. These changes can include certain frequencies 

being absorbed by soft furnishings, and reflection of different frequencies at varying 

strength. These secondary reflections are not strictly referred to as echo, but rather 

are "reverb". 

Acoustic echo is heard by the far end talkers in a conversation. So if a person in 

Room A talks, they will hear their voice bounce around in Room B. This sound needs 

to be cancelled, or it will get sent back to its origin. Due to the slight round-trip 

transmission delay, this acoustic echo is very distracting. 

  

www.Vidyarthiplus.com

www.Vidyarthiplus.com



       EC 6502 PRINCIPLES OF  DIGITAL SIGNAL PROCESSING 
  

 PREPARED BY Mr.R.RAMADOSS AP/ECE 2126-SMIT                             Page 124 
 

 

Acoustic Echo Cancellation 

Since invention at AT&T Bell Labs[1] echo cancellation algorithms have been 

improved and honed. Like all echo cancelling processes, these first algorithms were 

designed to anticipate the signal which would inevitably re-enter the transmission 

path, and cancel it out. 

The Acoustic Echo Cancellation (AEC) process works as follows: 

1. A far-end signal is delivered to the system. 

2. The far-end signal is reproduced by the speaker in the room. 

3. A microphone also in the room picks up the resulting direct path sound, and 

consequent reverberant sound as a near-end signal. 

4. The far-end signal is filtered and delayed to resemble the near-end signal. 

5. The filtered far-end signal is subtracted from the near-end signal. 

6. The resultant signal represents sounds present in the room excluding any direct or 

reverberated sound produced by the speaker. 

Challenges for AEC (Acoustic Echo Cancellation) 

The primary challenge for an echo canceler is determining the nature of the filtering 

to be applied to the far-end signal such that it resembles the resultant near-end 

signal. The filter is essentially a model of the speaker, microphone and the room's 

acoustical attributes. 

To configure the filter, early echo cancellation systems required training with impulse 

or pink noise, and some used this as the only model of the acoustic space. Later 

systems used this training only as a basis to start from, and the canceller then 

adapted from that point on. By using the far-end signal as the stimulus, modern 

systems can 'converge' from nothing to 55 dB of cancellation in around 200 ms. 

Full Bandwidth Cancellation 

Until recently echo cancellation only needed to apply to the voice bandwidth of 

telephone circuits. PSTN calls transmit frequencies between 300 Hz and 3 kHz, the 

range required for human speech intelligibility. 

Videoconferencing is one area where full bandwidth audio is transceived. In this 

case, specialised products are employed to perform echo cancellation. 
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